Desired Future Conditions Committee Update

October 11, 2022

Agenda

- Fair Share
- Preliminary 2022 DFC & PDL Compliance Evaluations
- Updates to Tops and Bottoms for the Carrizo Wilcox Aquifer
- Guidance for Drilling Water Wells in the Carrizo Wilcox Aquifer
- Post Oak Savannah Operational Model

Fair Share

Production Capacity in POSGCD

17

	Production	Capacity	Aquifer Property			
Aquifers	Amount*	Percent	Area (mi ²)	Average Transmissivity (ft ² /day)		
Upper Trinity	17	1	807	211		
Lower Trinity	14	1	807	591		
Sparta	62	3	577	1,066		
Queen City	97	4	753	1,286		
Carrizo	181	8	832	2,178		
Calvert Bluff	179	8	1,025	1,747		
Simsboro	1,583	68	1,128	14,035		
Hooper	109	5	1,234	885		
Yegua Jackson	90	4	368	2,440		

* area x average transmissivity

Key Observations

- Average production capacity among aquifers varies by a factor of 10
- Within each aquifer the production capacity can vary by a factor of 5
- A 2 acre-ft/ac production allotment is not physical possible for aquifers
- Prudent aquifer management includes adjusting the production allotment to the aquifer different hydrogeologic conditions

Approach to Estimate Maximum Production Allotment

- Hypothesize a well field of 5,000 acres
 - 2 ac-ft/ac = 10,000 AFY (6,195 gpm)
 - Three wells pumping 2,065 gpm spaced 2 ft/gpm

- Extract Aquifer Properties from Operational Model (August 2021)
- Simulate Drawdown Impact for the Hypothetical Well Field using a Theis-based Groundwater Model
- Compare Simulated Drawdown obtain from Model Simulation to Estimated Water Column Above Top of Aquifer

Datio -	Drawdown	Ratio << 1	Well field is viable
Ratio = -		Ratio >> 1	Well field is not viable
Avai	lable Drawdown		

Obtaining Aquifer Properties from Operational Model

- Partition into Each Aquifer int Zones based on Depth(ft)
 - < 250 ft
 - 250 to 500
 - 500 to 1000
 - 1000 to 2000
 - 2000 to 3000

- Each Zone
 - Transmissivity
 - Storativity
 - Water level above top of Aquifer

Simulate Drawdown After 5-years of Pumping: Simsboro Example @ 2 Acre-ft/Acre

	Douth of	Depth of Drawdown		Simulated Drawdown						
Aquifer	Aquifor			Pumping Radial Distance from Well						
	Aquiler	(ft)	Well	500 ft	1000 ft	3000 ft	4000 ft	6537 ft		
_	0 to 250	-61	223	145	135	116	110	99		
oro	250 to 500	67	154	111	105	95	91	85		
nsb	500 to 1000	424	186	138	132	120	116	109		
Sir	1000 to 2000	1089	125	95	91	84	82	/8		
	2000 to 3000	2026	105	81	78	72	71	67		

Simulated Drawdown for Simsboro (depth= 500 to 1000 ft)

Impact Matrix for 5-years of Pumping based on Different Maximum Production Allocations

Aquifor Dopth (ft)			2 af/ac			1 af/ac			0.5 af/ac			0.25 af/ac	:		0.125 af/a	С
Aquiter	Depth (It)	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft
	0 to 250	8.1	3.9	<u>3.2</u>	4.1	1.9	<u>1.6</u>	2.0	1.0	0.8	1.0	0.5	0.4	0.5	0.2	0.2
ta	250 to 500	25.1	13.6	<u>11.7</u>	12.6	6.8	<u>5.9</u>	6.3	3.4	<u>2.9</u>	3.1	1.7	<u>1.5</u>	1.6	0.9	0.7
bar	500 to 1000	6.4	3.7	<u>3.3</u>	3.2	1.9	<u>1.6</u>	1.6	0.9	<u>0.8</u>	0.8	0.5	<u>0.4</u>	0.4	0.2	0.2
S	1000 to 2000	2.2	1.3	<u>1.2</u>	1.1	0.7	<u>0.6</u>	0.5	0.3	0.3	0.3	0.2	0.1	0.1	0.1	0.1
	2000 to 3000	2.3	1.4	<u>1.3</u>	1.2	0.7	<u>0.6</u>	0.6	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.1
>	0 to 250	8.4	4.0	<u>3.3</u>	4.2	2.0	<u>1.7</u>	2.1	1.0	0.8	1.1	0.5	0.4	0.5	0.3	0.2
cit	250 to 500	12.8	7.1	<u>6.2</u>	6.4	3.6	<u>3.1</u>	3.2	1.8	<u>1.6</u>	1.6	0.9	0.8	0.8	0.4	0.4
sen	500 to 1000	2.9	1.8	<u>1.6</u>	1.5	0.9	<u>0.8</u>	0.7	0.4	0.4	0.4	0.2	0.2	0.2	0.1	0.1
Que	1000 to 2000	1.7	1.1	<u>0.9</u>	0.9	0.5	<u>0.5</u>	0.4	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	2000 to 3000	1.5	0.9	<u>0.9</u>	0.8	0.5	<u>0.4</u>	0.4	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	0 to 250	8.9	4.2	<u>3.4</u>	4.4	2.1	<u>1.7</u>	2.2	1.1	0.9	1.1	0.5	0.4	0.6	0.3	0.2
οz	250 to 500	4.5	2.6	<u>2.2</u>	2.2	1.3	<u>1.1</u>	1.1	0.6	0.6	0.6	0.3	0.3	0.3	0.2	0.1
arri	500 to 1000	1.7	1.1	<u>0.9</u>	0.9	0.5	<u>0.5</u>	0.4	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1
Ö	1000 to 2000	0.6	0.4	0.4	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0
	2000 to 3000	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ff	0 to 250	7.9	3.8	<u>3.1</u>	3.9	1.9	<u>1.6</u>	2.0	0.9	0.8	1.0	0.5	0.4	0.5	0.2	0.2
Blu	250 to 500	8.1	4.7	<u>4.1</u>	4.1	2.3	<u>2.1</u>	2.0	1.2	1.0	1.0	0.6	0.5	0.5	0.3	0.3
ert	500 to 1000	2.3	1.4	<u>1.3</u>	1.2	0.7	<u>0.7</u>	0.6	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.1
alv	1000 to 2000	1.1	0.7	<u>0.6</u>	0.6	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0
0	2000 to 3000	1.5	0.9	<u>0.8</u>	0.7	0.5	<u>0.4</u>	0.4	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	0 to 250	3.0	1.5	1.3	1.5	0.8	<u>0.7</u>	0.7	0.4	0.3	0.4	0.2	0.2	0.2	0.1	0.1
oro	250 to 500	2.1	1.3	1.1	1.0	0.6	<u>0.6</u>	0.5	0.3	0.3	0.3	0.2	0.1	0.1	0.1	0.1
nsb	500 to 1000	0.4	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
Sin	1000 to 2000	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2000 to 3000	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0 to 250	12.3	5.7	<u>4.6</u>	6.2	2.8	<u>2.3</u>	3.1	1.4	1.1	1.5	0.7	0.6	0.8	0.4	0.3
er	250 to 500	17.3	9.5	<u>8.2</u>	8.6	4.8	<u>4.1</u>	4.3	2.4	<u>2.1</u>	2.2	1.2	1.0	1.1	0.6	0.5
doo	500 to 1000	4.0	2.4	<u>2.1</u>	2.0	1.2	<u>1.1</u>	1.0	0.6	<u>0.5</u>	0.5	0.3	0.3	0.2	0.1	0.1
오	1000 to 2000	1.6	1.0	<u>0.9</u>	0.8	0.5	<u>0.4</u>	0.4	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	2000 to 3000	1.0	0.6	<u>0.6</u>	0.5	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.0

Ratio = Drawdown

	Color									
	Ratio	0 - 0.25	0.25 - 0.5	0.5 - 0.75	0.75 - 1	1.0 - 2.0	2.0 - 4.0	4.0 - 8.0	8.0 - 16.0	16.0 - 32.0
vn										

Available Drawdown

Possible Implementation Approach: Technical

Maximum Production Allocation for any parcel is 2.5 acre-ft/acre

Maximum production allocation can vary among aquifers and can vary spatially within an Aquifer

- Production Allocations for Carrizo-Wilcox Aquifers
 - Outcrop and less than 250 feet thickness: minimum rate
 - Increase allocations based on aquifer depth and aquifer thickness
 - Include a threshold production rate
 - Perform additional evaluations with different productions other than 10,000 AFY

	Production Allocation					
Aquifer	(ac-ft/acre)					
	Minimum	Maximum				
Yegua Jackson	0.25	0.25				
Sparta	0.25	0.25				
Queen City	0.25	0.25				
Carrizo	0.25	0.75				
Calvert Bluff	0.25	0.5				
Simsboro	0.5	2				
Hooper	0.25	0.5				

Possible Implementation Approach: Legal

- Incorporate modifications as part of the curtailment actions in response to Threshold exceedances for DFC
- Incorporate modifications as part readjustments during 5-renewal process
- Establish a future time when modifications will go into effect based on termination of most recent 40-year permit

Preliminary 2022 DFC & PDL Compliance Evaluations

DFC Management Zones

- Spans the aquifer footprint within the District
- Yegua-Jackson and Brazos Valley Alluvium . not shown

Aquifer	2070 Drawdown
Sparta	32
Queen City	30
Carrizo	146
Upper Wilcox (Calvert Bluff Fm)	156
Middle Wilcox (Simsboro Fm)	278
Lower Wilcox (Hooper Fm)	178

Queen City

Outcrop

DFC Manage

Outcrop

Calvert Bluff

Outcrop

Hooper

Outcrop

Outcrop

Confined

DFC Management

DFC Manag

Outcrop

Confined

Confined

PDL Management Areas

- Management Zones has been partitioned into Management Areas
- Only Management Areas with sufficient monitoring wells are have PDLs

Manageme	2070 Drawdown	
Sparta	Area 1	28
Queen City	Area 1	75
Corrizo	Area 1	75
Callizo	Area 2	175
Calvert Bluff	Area 1	88
(Upper Wilcox)	Area 2	223
Simsboro	Area 1	91
(Middle Wilcox)	Area 2	335
Hooper (Lower Wilcox)	Area 1	210

POSGCD Wells Used in Current Analysis

- Primary aquifers are based on the amount (>=70%) that the screen intervals intercept an aquifer
- Only wells with a primary aquifer assignment are used in DFC/PDL evaluations
- Well Count for Aquifers*
 - >70% (246)
 - All wells with WLs (273)

* Excludes Yegua Jackson, Brazos River, Cook Mountain, Reklaw, & Weches

2022 Monitoring Network

* Active monitoring well

2022 POSGCD, LPGCD, BVGCD (349 Count*)

* POSGCD wells >70% coverage , well used for DFC/PDF calculations

Interpolation of Measured Water Levels to Generate Continuous Surfaces

- Water Level Measurements
 - Measurements limited to January 1 to April 31st
 - Includes continuous measurements from transducer and WellIntel
- Data Interpolation Methods
 - Topo2Raster (method for land surface)¹
 - Kriged Water Levels (method with no spatial trend)²
 - Kriged Residuals (method that accounts for spatial trend)³

¹ Previous Methos method

² Kriged Water Levels are based on geostatistical analysis of data

³ Kriged Residuals is based on geostatistical analysis of data and groundwater modeling

Three Methods to Estimate Drawdown Surface

The average drawdown surface value is taken for each method over the period from 2011 to 2020

Three Methods to Estimate Drawdown from 2011

The average drawdown of all three method is used to determine the compliance

Criteria For Exceedance

- Average Drawdown Exceeds a Threshold Value
- Drawdowns for Two out Three Methods Exceed a Threshold Value

Two Hypothetical Examples to Demonstrate Criteria

		Overall		
DFC	Method	Method Determined		Complaince
	Wethod	Value	Exceedance	complaince
	#1	59.0	Theshold 1	
	#2	48.0	None	No
100	#3	47.0	None	Threshold is
	Average Value	51.3	Theshold 1	Exceeded
	% of DFC	51.3%	Theshold 1	

		Overall		
DFC	Method	Determined	Exceedance	Complaince
	wiethou	Value	Exceedance	complaince
	#1	#1 59.0		
	#2	48.0	None	Throshold 1
100	#3	52.0	Theshold 1	is Excooded
	Average Value	53.0	Theshold 1	IS Exceeded
	% of DFC	53.0%	Theshold 1	

Threshold 1 = 50% DFC Threshold 2 = 60% DFC Threshold 3 = 75% DFC

Preliminary DFC Compliance 2022 Evaluation

		Drawdown Calculations	Threshold Criteria				
	556	Avg. Drawdown (ft) /	Avg Drawdown				
Management Zone	DFC	% of DFC		Compliant With DFC			
		# Methods > Threshold 1	# Methods				
Sporto	20	12.0 (37.6%)	No Threshold Reach	Vac			
Spana	JZ	1	No Threshold Reach	162			
Queen City	20	11.3 (37.8%)	No Threshold Reach	Vaa			
Queen City	30	1	No Threshold Reach	163			
Corrigo	146	41.2(28.2%)	No Threshold Reach	Yee			
Camzo		0	No Threshold Reach	Tes			
Calvert Bluff (Upper Wilcox)	156	44.3 (28.4%)	No Threshold Reach	Voc			
Carvert Brun (Opper Wilcox)	150	0	No Threshold Reach	165			
Simahara (Middla Wilaax)	270	32.2 (11.6%)	No Threshold Reach	Vaa			
Simsporo (ivitadie vvitcox)	270	0	No Threshold Reach	165			
Hooper (Lower Wilcox)	178	20.7 (11.6%)	No Threshold Reach	Vaa			
		0	No Threshold Reach	105			
Threshold 1 = 50% DFCThreshold 2 = 60% DFCThreshold 3 = 75% DFC							

Preliminary PDL Compliance 2022 Evaluation

Management Area			Drawdown Calculations	Threshold Criteria		
		PDL	Avg. Drawdown (ft) / % of DFC Avg. Drawdown		Compliant with PDL	
			# Methods > Threshold 1	# Methods		
Sporto	Aroa 1	20	2.9 (10.2%)	No Threshold Reached	Vac	
Sparta	Alea I	20	0	No Threshold Reached	Tes	
Queen City	Aroa 1	75	0.1 (0%)	No Threshold Reached	Vac	
Queen City	Alea I	15	0	No Threshold Reached	Tes	
	Area 1	75	29.7 (40%)	No Threshold Reached	Vaa	
Corrigo	Area I	Area 1 75	0	No Threshold Reached	Tes	
Carrizo	A	rea 2 175	54.5 (31%)	No Threshold Reached	Vac	
	Area 2		0	No Threshold Reached	fes	
	A	00	43.6 (<50%)	No Threshold Reached	Nee	
Calvert Bluff	Area 1		1	No Threshold Reached	fes	
(Upper Wilcox)	A		38.0 (17%)	No Threshold Reached	Vac	
	Area 2	223	0	No Threshold Reached	tes	
	A	04	17.5 (19%)	No Threshold Reached	No.a	
Simsboro	Area 1	91	0	No Threshold Reached	tes	
(Middle Wilcox)	A	225	40.7 (12%)	No Threshold Reached	No.a	
	Area 2		0	No Threshold Reached	Tes	
Hooper	Aread	240	11.9 (6%)	No Threshold Reached	Vaa	
(Lower Wilcox)	Wilcox) Area 1		0	No Threshold Reached	Tes	
	Thresh	nold 1 = 5	0% PDL Threshold 2 = 60% PDL	Threshold 3 = 75% DFC	-	

Preliminary Compliance 2022 Report Evaluation

- Summary
 - Methodology in Revised Guidance Document Being Used
 - No DFCs exceedance for 2022
 - No PDLs exceedances for 2022
 - Three interpolation methods used for evaluation
 - Agreement is very good for Carrizo and Simsboro
 - Results suggest that compliance criteria could switch from drawdown to average water levels Carrizo and Simsboro
- Yegua-Jackson Aquifer not yet Evaluated
 - DFC is 61 feet (Jan 2010 to Dec 2069)

Updates to Tops and Bottoms for the Carrizo Wilcox Aquifer

Reason for Update

- Existing GAM
 - No documentation on construction of aquifer surfaces from geophysical logs
 - About 300 ft increase in Simsboro thickness in Vista Ridge well field, Gauze Well, and other areas to account for bias is GAM layers
 - Alcoa 0148 permit indicated that numerous Simsboro wells are classified as Calvert Bluff wells based on GAM layering

Analysis of Geophysical Logs

Top of Aquifor	Count as of September		
TOP OF Aquiter	2022		
Carrizo	1457		
Calvert Bluff	1238		
Simsboro	1825		
Hooper	1780		
Midway	2221		

- Builds on Aquifer Stratigraphy Used to Identify Faults for Updated GAM
- Considerable Historical Logs Provided by ALCOA/SLR in 2021
- Reviewed Railroad Commission GW Model for Dewatering the Sandow Mine Region
- Surface geology map from Bureau of Economic Geology
- Recent Hutto wells and SLR Test wells provided key data to fill in major data gaps

Top of Simsboro Based on Geophysical Logs

Difference between GAM Surface and Geophysical Surface

Difference between GAM Surface and Geophysical Surface

Updated Geology

- Application
 - Re-evaluate and check aquifer assignments for permitted wells to the geology model for consistency (example: SLR 0148 D&O Permit)
 - Update POSGCD Operational Model
 - Assist with review of Future D&O Permits
 - Develop sand thickness maps to assist with characterizing aquifer transmissivity properties
- On-going Work
 - Assemble logs from GCDs
 - Coordinate with TWDB on updating well assignments in TWDB Groundwater Database
 - Continually identify and evaluate geologic faults
 - Review Driller logs
 - Characterize multiple major sand bodies in Simsboro & Hooper

Guidance for Drilling Water Wells in the Carrizo Wilcox Aquifer

Driller's Guidance Document

- Purpose
 - Prevent newly drilled wells from having water levels drop below elevation of pump in the next 50 years
- Proposed Approach
 - Simulate future water levels based of best available science, and then calculate depth

Depth of Pump (ft, bgs)		Ground		Simulated 2070	- 100 feet	
	=	Surface	-	Water Level		t
		(ft <i>,</i> msl)		(ft, msl)		

- Develop a Driller Guidance Document & Map
- POSGCD will provide depth to driller/well owner as part of registration process
- Complete process by December 31, 2022

Simulated Water Simsboro Drawdown (2020 – 2070)

Simulated Water Carrizo Drawdown (2020 – 2070)

Elevation and Depths for Pump Settings: Carrizo

Elevation and Depths for Pump Settings: Simsboro

Elevation (ft, mean sea level)

POSGCD Operational Model

POSGCD Operational Model

Generate a Technical Defensible GW Model to Support District Decisions Related to:

- Permit Renewals
- Long-term aquifer sustainability
- Improved climate resiliency
- Desired Future Conditions
- Curtailment of production
- Fair share allocations
- Drought management

GAM Recalibration Area for Aquifer Hydraulic

Dronartias

Modeling Approach

- Refined Grid in POSGCD to Better Define Location of Pumping wells and Surface Water Bodies
- Update model layering to better reflect the site geology
- Extend GAM calibration from 2010 to 2022 (present)
- Improved simulation of surface water /groundwater interactions
- Incorporate results of large-scale pumping tests
- Quantify uncertainty in model predictions

Example of Grid Refinement

Area near SLR

10 m

5

Legend

Vista Ridge Well Refined Modflow Grid

Transducer and Wellntel Data

- Separate Presentation
 - Continuous water level measurements at POSGCD transducers
 - Continuous water level and pumping rates at Vista Ridge and 130 Project wells

SLR Lakes

Aquifer Pumping Tests

Aquifer Pumping Tests provide an excellent data set to test the ability of a model to simulate drawdown impacts caused by local pumping

- Vista Ridge wells
- SLR/ALCOA wells
- City of Bryan
- municipal

Pumping Vista Well PW 10 at

Questions?