Desired Future Conditions Committee Update

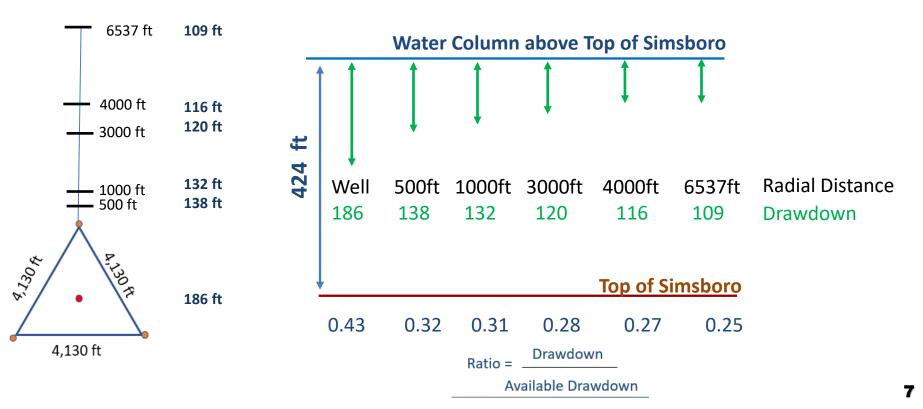
October 11, 2022

Fair Share

Production Capacity in POSGCD

	Production	Capacity	Aqu	ifer Property		Legend — Faults Transmissivity-All A <250
Aquifers	Amount*	Percent	Area (mi ²)	Average Transmissivity (ft ² /day)		250 - 1,000 1,000 - 2,500 2,500 - 5,000 5,000 - 10,000 10,000 - 20,000 20,000 - 40,000
Upper Trinity	17	1	807	211	Milam 4	40,000 - 80,000
Lower Trinity	14	1	807	591		7.00
Sparta	62	3	577	1,066	\sim	A Star Star Star
Queen City	97	4	753	1,286		SI 2 2
Carrizo	181	8	832	2,178		An marked and a second
Calvert Bluff	179	8	1,025	1,747		and the second second
Simsboro	1,583	68	1,128	14,035	۲. ۲. ۲	
Hooper	109	5	1,234	885	INTO T	121.M
Yegua Jackson	90	4	368	2,440	[r]	Burleson

* area x average transmissivity


Key Observations

- Average production capacity among aquifers varies by a factor of 10
- Within each aquifer the production capacity can vary by a factor of 5
- A 2 acre-ft/ac production allotment is not physical possible for aquifers
- Prudent aquifer management includes adjusting the production allotment to the aquifer different hydrogeologic conditions

Simulate Drawdown After 5-years of Pumping: Simsboro Example @ 2 Acre-ft/Acre

	Douth of	Available	Simulated Drawdown							
Aquifer	Depth of Aquifer	Drawdown	Pumping	Radial Distance from Well						
	Aquiter	(ft)	Well	500 ft	1000 ft	3000 ft	4000 ft	6537 ft		
_	0 to 250	-61	223	145	135	116	110	99		
oro	250 to 500	67	154	111	105	95	91	85		
Simsboro	500 to 1000	424	186	138	132	120	116	109		
Sir	1000 to 2000	1089	125	95	91	84	82	/8		
	2000 to 3000	2026	105	81	78	72	71	67		

Simulated Drawdown for Simsboro (depth= 500 to 1000 ft)

Impact Matrix for 5-years of Pumping based on Different Maximum Production Allocations

Aquifer Depth (ft)		2 af/ac 1 af/ac				0.5 af/ac			0.25 af/ac			0.125 af/ac				
Aquiter	Depth (ity	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft	Well	3000 ft	6537 ft
	0 to 250	8.1	3.9	<u>3.2</u>	4.1	1.9	<u>1.6</u>	2.0	1.0	0.8	1.0	0.5	0.4	0.5	0.2	0.2
ta	250 to 500	25.1	13.6	<u>11.7</u>	12.6	6.8	<u>5.9</u>	6.3	3.4	<u>2.9</u>	3.1	1.7	<u>1.5</u>	1.6	0.9	0.7
Sparta	500 to 1000	6.4	3.7	<u>3.3</u>	3.2	1.9	<u>1.6</u>	1.6	0.9	<u>0.8</u>	0.8	0.5	<u>0.4</u>	0.4	0.2	0.2
S	1000 to 2000	2.2	1.3	<u>1.2</u>	1.1	0.7	<u>0.6</u>	0.5	0.3	0.3	0.3	0.2	0.1	0.1	0.1	0.1
	2000 to 3000	2.3	1.4	<u>1.3</u>	1.2	0.7	<u>0.6</u>	0.6	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.1
>	0 to 250	8.4	4.0	<u>3.3</u>	4.2	2.0	<u>1.7</u>	2.1	1.0	0.8	1.1	0.5	0.4	0.5	0.3	0.2
cit	250 to 500	12.8	7.1	<u>6.2</u>	6.4	3.6	<u>3.1</u>	3.2	1.8	<u>1.6</u>	1.6	0.9	0.8	0.8	0.4	0.4
Queen City	500 to 1000	2.9	1.8	<u>1.6</u>	1.5	0.9	<u>0.8</u>	0.7	0.4	0.4	0.4	0.2	0.2	0.2	0.1	0.1
Que	1000 to 2000	1.7	1.1	<u>0.9</u>	0.9	0.5	<u>0.5</u>	0.4	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	2000 to 3000	1.5	0.9	<u>0.9</u>	0.8	0.5	<u>0.4</u>	0.4	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	0 to 250	8.9	4.2	<u>3.4</u>	4.4	2.1	<u>1.7</u>	2.2	1.1	0.9	1.1	0.5	0.4	0.6	0.3	0.2
οz	250 to 500	4.5	2.6	<u>2.2</u>	2.2	1.3	<u>1.1</u>	1.1	0.6	0.6	0.6	0.3	0.3	0.3	0.2	0.1
Carrizo	500 to 1000	1.7	1.1	<u>0.9</u>	0.9	0.5	<u>0.5</u>	0.4	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1
U	1000 to 2000	0.6	0.4	0.4	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0
	2000 to 3000	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
£	0 to 250	7.9	3.8	<u>3.1</u>	3.9	1.9	<u>1.6</u>	2.0	0.9	0.8	1.0	0.5	0.4	0.5	0.2	0.2
Blu	250 to 500	8.1	4.7	<u>4.1</u>	4.1	2.3	<u>2.1</u>	2.0	1.2	1.0	1.0	0.6	0.5	0.5	0.3	0.3
ert	500 to 1000	2.3	1.4	<u>1.3</u>	1.2	0.7	<u>0.7</u>	0.6	0.4	0.3	0.3	0.2	0.2	0.1	0.1	0.1
Calvert Bluff	1000 to 2000	1.1	0.7	<u>0.6</u>	0.6	0.3	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0
	2000 to 3000	1.5	0.9	<u>0.8</u>	0.7	0.5	<u>0.4</u>	0.4	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	0 to 250	3.0	1.5	1.3	1.5	0.8	<u>0.7</u>	0.7	0.4	0.3	0.4	0.2	0.2	0.2	0.1	0.1
ord	250 to 500	2.1	1.3	1.1	1.0	0.6	<u>0.6</u>	0.5	0.3	0.3	0.3	0.2	0.1	0.1	0.1	0.1
Simsboro	500 to 1000	0.4	0.3	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0
Sir	1000 to 2000	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2000 to 3000	01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0 to 250	12.3	5.7	<u>4.6</u>	6.2	2.8	<u>2.3</u>	3.1	1.4	1.1	1.5	0.7	0.6	0.8	0.4	0.3
Der	250 to 500	17.3	9.5	<u>8.2</u>	8.6	4.8	<u>4.1</u>	4.3	2.4	<u>2.1</u>	2.2	1.2	1.0	1.1	0.6	0.5
Hooper	500 to 1000	4.0	2.4	<u>2.1</u>	2.0	1.2	<u>1.1</u>	1.0	0.6	<u>0.5</u>	0.5	0.3	0.3	0.2	0.1	0.1
Т	1000 to 2000	1.6	1.0	<u>0.9</u>	0.8	0.5	<u>0.4</u>	0.4	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1
	2000 to 3000	1.0	0.6	<u>0.6</u>	0.5	0.3	0.3	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.0	0.0

Ratio = Drawdown

	Color									
	Ratio	0 - 0.25	0.25 - 0.5	0.5 - 0.75	0.75 - 1	1.0 - 2.0	2.0 - 4.0	4.0 - 8.0	8.0 - 16.0	16.0 - 32.0
wn										

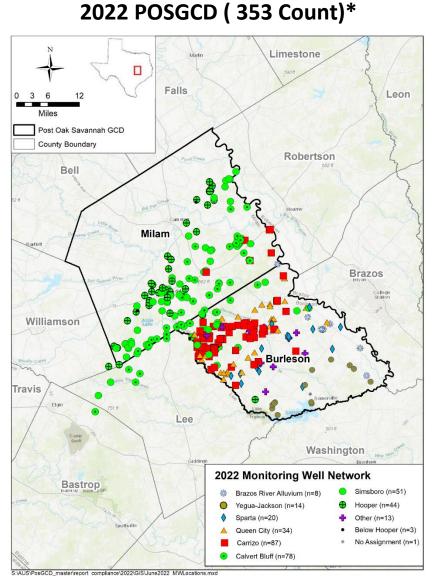
Available Drawdown

Possible Implementation Approach: Technical

Maximum Production Allocation for any parcel is 2.5 acre-ft/acre

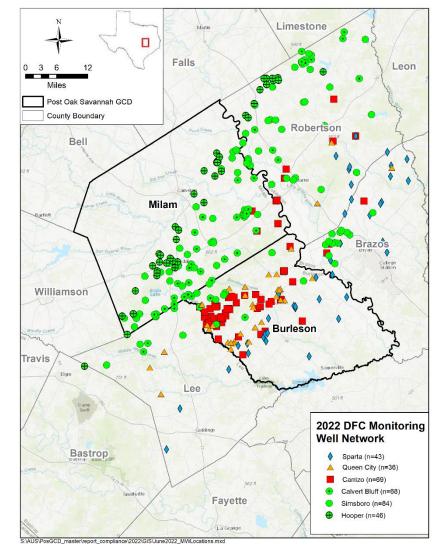
Maximum production allocation can vary among aquifers and can vary spatially within an Aquifer

- Production Allocations for Carrizo-Wilcox Aquifers
 - Outcrop and less than 250 feet thickness: minimum rate
 - Increase allocations based on aquifer depth and aquifer thickness
 - Include a threshold production rate
 - Perform additional evaluations with different productions other than 10,000 AFY


Aquifer	Production Allocation (ac-ft/acre)					
	Minimum	Maximum				
Yegua Jackson	0.25	0.25				
Sparta	0.25	0.25				
Queen City	0.25	0.25				
Carrizo	0.25	0.75				
Calvert Bluff	0.25	0.5				
Simsboro	0.5	2				
Hooper	0.25	0.5				

Possible Implementation Approach: Legal

- Incorporate modifications as part of the curtailment actions in response to Threshold exceedances for DFC
- Incorporate modifications as part readjustments during 5-year review process
- Establish a future time when modifications will go into effect based on termination of most recent 40-year permit


Preliminary 2022 DFC & PDL Compliance Evaluations

2022 Monitoring Network

* Active monitoring well

2022 POSGCD, LPGCD, BVGCD (349 Count*)

* POSGCD wells >70% coverage , well used for DFC/PDF calculations

Preliminary DFC Compliance 2022 Evaluation

		Drawdown Calculations	Threshold Criteria					
Management Zone	DFC	Avg. Drawdown (ft) / % of DFC	Avg Drawdown	Compliant With DFC				
		# Methods > Threshold 1	# Methods					
Sporto	32	12.0 (37.6%)	No Threshold Reach	Yes				
Sparta	52	1	No Threshold Reach	Tes				
Queen City	30	11.3 (37.8%)	No Threshold Reach	Yes				
Queen City	30	1	No Threshold Reach	Tes				
Carrizo	146	41.2(28.2%)	No Threshold Reach	Yes				
Carrizo	140	0	No Threshold Reach	Tes				
Calvert Bluff (Upper Wilcox)	156	44.3 (28.4%)	No Threshold Reach	Yes				
	150	0	No Threshold Reach	105				
Simsboro (Middle Wilcox)	278	32.2 (11.6%)	No Threshold Reach	Yes				
	210	0	No Threshold Reach	105				
Hooper (Lower Wilcox)	178	20.7 (11.6%)	No Threshold Reach	Yes				
		0	No Threshold Reach	100				
Threshold	Threshold 1 = 50% DFCThreshold 2 = 60% DFCThreshold 3 = 75% DFC							

Preliminary PDL Compliance 2022 Evaluation

			Drawdown Calculations	Threshold Criteria		
Management Area		PDL	Avg. Drawdown (ft) / % of DFC	Avg. Drawdown	Compliant with PDL	
			# Methods > Threshold 1	# Methods		
Sporto	Area 1	28	2.9 (10.2%)	No Threshold Reached	Yes	
Sparta	Alea I	20	0	No Threshold Reached	Tes	
Queen City	Area 1	75	0.1 (0%)	No Threshold Reached	Yes	
Queen City	Area 1	75	0	No Threshold Reached	res	
	Area 1	75	29.7 (40%)	No Threshold Reached	Yes	
Carrizo	Alea I	10	0	No Threshold Reached	Tes	
Carrizo	Area 2	2 175	54.5 (31%)	No Threshold Reached	Yes	
	Area Z		0	No Threshold Reached	fes	
	Area 1	rea 1 88	43.6 (<50%)	No Threshold Reached	Yes	
Calvert Bluff			1	No Threshold Reached	fes	
(Upper Wilcox)	Area 2	223	38.0 (17%)	No Threshold Reached	Yes	
	Alea Z	223	0	No Threshold Reached	Tes	
	A rea 1	91	17.5 (19%)	No Threshold Reached	Vaa	
Simsboro	Area 1	91	0	No Threshold Reached	Yes	
(Middle Wilcox)	A	225	40.7 (12%)	No Threshold Reached	Vaa	
	Area 2	335	0	No Threshold Reached	Yes	
Hooper	A 100 4	210	11.9 (6%)	No Threshold Reached	Vaa	
(Lower Wilcox)	lcox) Area 1		0	No Threshold Reached	Yes	

Updates to Tops and Bottoms for the Carrizo Wilcox Aquifer

Reason for Update

- Existing GAM
 - No documentation on construction of aquifer surfaces from geophysical logs
 - About 300 ft increase in Simsboro thickness in Vista Ridge well field, Gauze Well, and other areas to account for bias is GAM layers
 - Alcoa 0148 permit indicated that numerous Simsboro wells are classified as Calvert Bluff wells based on GAM layering

Guidance for Drilling Water Wells in the Carrizo Wilcox Aquifer

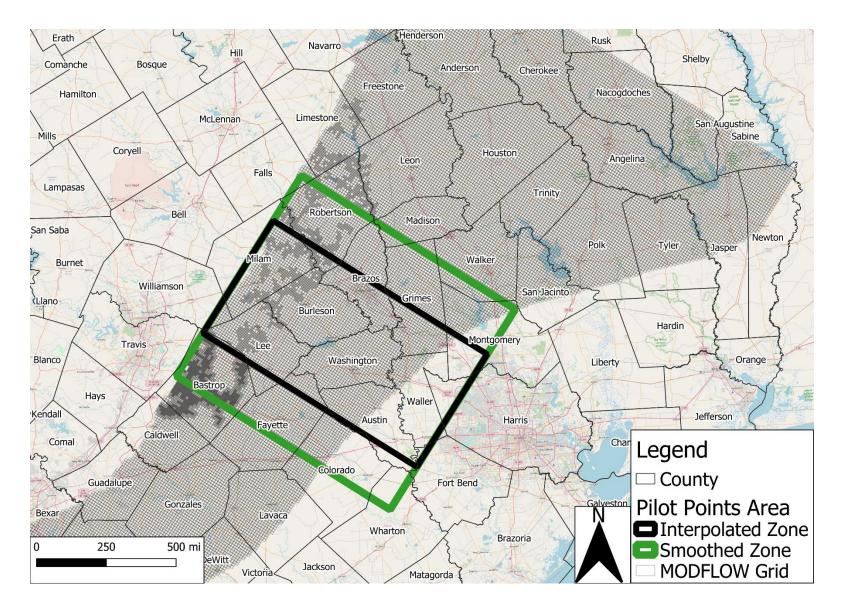
Driller's Guidance Document

- Purpose
 - Prevent newly drilled wells from having water levels drop below elevation of pump in the next 50 years
- Proposed Approach
 - Simulate future water levels based of best available science, and then calculate depth

Depth of Pump		Ground		Simulated 2070	
• • •	=	Surface	-	Water Level	- 100 feet
(ft, <u>bgs</u>)		(ft, msl)		(ft, msl)	

- Develop a Driller Guidance Document & Map
- POSGCD will provide depth to driller/well owner as part of registration process
- Complete process by December 31, 2022

POSGCD Operational Model


POSGCD Operational Model

Generate a Technical Defensible GW Model to Support District Decisions Related to:

- Permit Renewals
- Long-term aquifer sustainability
- Improved climate resiliency
- Desired Future Conditions
- Curtailment of production
- Fair share allocations
- Drought management

GAM Recalibration Area for Aquifer Hydraulic

Dronartias

Modeling Approach

- Refined Grid in POSGCD to Better Define Location of Pumping wells and Surface Water Bodies
- Update model layering to better reflect the site geology
- Extend GAM calibration from 2010 to 2022 (present)
- Improved simulation of surface water /groundwater interactions
- Incorporate results of large-scale pumping tests
- Quantify uncertainty in model predictions

Questions?