#### **POSGCD Desired Future Committee Update**



December 15, 2021

# Outline

- Recent Reports on Groundwater Sustainability
- GMA 12: DFCs and Explanatory Report
- Qualifications for GWAP
- GWAP Annual Needs Assessment Draft Report
- Guidance Document 2021 Draft Report
- Monitoring Compliance Update

### Recent Reports on Groundwater Sustainability

# Meadows Center for the Environment

- Aquifers of Texas
- Historical Perspective of Sustainability
- Sustainability
  - Water planning
  - Groundwater management
  - Desired Future Conditions
- GWAP Annual Needs Assessment Draft Report
- Types of Factors that Could Lead to Groundwater Sustainability
- Recommendations

#### FIVE GALLONS IN A TEN GALLON HAT: GROUNDWATER SUSTAINABILITY IN TEXAS

November 2021 | Report 2021-08





AUTHOR:

Robert E. Mace, Ph.D., P.G. The Meadows Center for Water and the Environment, Texas State University

MEMBER THE TEXAS STATE UNIVERSITY SYSTEM

### **Sustainable Production**

Sustainable production or the words sustainable or sustainably outside of the above contexts refers to any action that can be performed indefinitely. Sustainable yield and maximum sustainable production are special cases of sustainable production.

Maximum sustainable production is the maximum amount of groundwater that can be produced sustainably.



### Recharge Myth

"Sustainable ground-water developments have almost nothing to do with recharge ......Capture from natural discharge is usually what determines the size of a sustainable development

(Bredehoeft, J., 1997, "Safe Yield and the Water Budget Myth," Groundwater, Vol 35, 6)

### Groundwater Sustainability

Groundwater sustainability is the development and use of ground water in a manner that can be maintained for an indefinite time without causing unacceptable environmental, economic, or social consequences (Alley and others). Groundwater sustainability has to be defined by a decisionmaker, ideally through a stakeholder process.

#### Groundwater sustainability is consistent Chapter 36 of Texas Water Code (TWC) requirements for establishing DFCs

- TWC §36.108 (d): "the districts shall consider nine factors when developing the DFCs "(aquifer conditions, water supply needs and management strategies, hydrological conditions, environmental impacts, land subsidence, socioeconomic, private property right)
- TWC §36.108 (d-2): must provide a balance between the highest practicable level of groundwater production and the conservation, preservation, protection, recharging, and prevention of waste of groundwater and control of subsidence.



# **Environmental Defense Fund**

- GCD Authorities
- Tools for Achieving Sustainable Groundwater Management
- Pathway to More Sustainable Management

#### Advancing Groundwater Sustainability in Texas

A Guide to Existing Authorities and Management Tools for Groundwater Conservation Districts and Communities

#### Authors

Vanessa Puig-Williams Director, Texas Water Program Environmental Defense Fund

Jennifer Diffley Culp & Kelly LLP

Graham Pough 2022 J.D. Candidate University of Texas School of Law

November 2020



### **Barriers to Sustainable Management**

#### **Potential Conflict from Opposing Management Goals**

First, GCDs' responsibility to conserve and preserve groundwater coupled with the responsibility of protecting property rights can create the appearance of conflicting management obligations. Additionally, in some places attempts to regulate groundwater have resulted in legal challenges and costly litigation. Uncertainty regarding management obligations plus fear of litigation risk can create powerful disincentives for district leadership to attempt any untested management paths.

#### **Potential Problems with Establishing a Balance**

Second and relatedly, in some places, reductions in overall existing pumping would be needed to bring the groundwater basin into balance. This is somewhat uncharted territory for GCDs in Texas who are faced with potential lawsuits for denying new groundwater permits or reducing existing ones.<sup>49</sup>

#### **Potential Problems with Sufficient Hydrogeologic Information/Data**

Third, many GCDs in Texas lack the local data that is needed to even set sustainable DFCs and management goals. While Chapter 36 requires GCDs to consider socioeconomic impacts or impacts to springflow, GCDs cannot make these considerations without adequate data. The TWDB does not provide GCDs with any economic analyses related to future impacts of DFCs on local economies. Additionally, the groundwater availability models that the TWDB develops are too regional in nature to provide any meaningful data on the impact that various levels of drawdown will have on localized springflow. The same holds true for data related to local permitting decisions – it is difficult for GCDs to consider how a potential permit will unreasonably impact surface water resources when data does not exist and local models have not been developed.

#### Pathways for GCDs to Better Equipped for Promoting Sustainable Production

- Building Public Engagement and Buy-in
  - Proactively engaging public in long-term vision and strategy
  - Strong case to be made for sustainable management is critical to protecting property rights
- Navigating Uncharted Territory Through Small Steps
  - Concerns regarding legal and political risks
  - Involve small stakeholder groups to address localized concerns
  - Implement new management tools on an "opt-in" or voluntary/incentive basis (call out to POSGCD Conservancy Program)
- Continually Develop and Refine Local Data, Science, and Models
  - Without decision support tools and information GCDs cannot adequately address potential outcomes of GW management decisions
  - Consider applying for federal grants and funding from private entities

# **Discussion Topics**

- Investigate Groundwater Sustainability (District, GMA 12)
  - Define and determine Maximum Sustainable Production
  - Define and determine different levels of Groundwater Sustainability
- Verbalize DFC Goals
  - What are acceptable impacts to existing wells, groundwater resources, GW-SW interactions
  - Explain how to quantify acceptable impacts to existing wells (GWAP + economics)
  - Explain how to protect/preserve GW resources (shallow DFC + monitoring + analyses)
  - Chapter 36
- Pursue Grants/Funding for GMA 12
  - Data Support System for monitoring, managing, and evaluating measured water levels
  - Approaches for defining and evaluating groundwater sustainability
  - Interactive web site for GMA 12 stakeholders

# **Example of GCD Funding From Grants**

#### Big·Bend·Conservation·Alliance, Far·West·Texas·Groundwater·Districts·Adopt·Data·Management·Softwareand·Develop·a·Data-Sharing·Module·to·See·the·Bigger·Pictureof·Shared·Aquifer·Health1 Reclamation·Funding:·\$48,000 → Total·Project·Cost:·\$96,0001

Big·Bend·Conservation·Alliance, in·partnership·with·Presidio·County·Underground·Water·Conservation·District, Brewster· County·Groundwater·Conservation·District, and·Culberson·County·Groundwater·Conservation·District, located in·west· Texas, will·establish·a·common·datamanagement·software·platform·in·the·region·enabling·them·to·share·data·on·sharedaquifers·and·to·provide·for·better·coordination·of·region-wide·water·management·goals. The·proximityof·these·counties· to·the·Permian·Basin, which is·experiencing·an·explosion·of·growth·in·unconventional·oil·exploration, puts·this·region·atsubstantial·risk·for·groundwater·depletion. The·adoption·of·this·software·and·data·sharing·module·will·provide·an·efficientway·to·monitor·the·aquifer·levels, groundwater·management·models, and desired·future·conditions·over·time·atthe·districtand·regional·level·and·facilitate·sharing·this·data·with·state·agencies·and·other·stakeholders. **1** 

#### Southwest·Research·Institute,·Application·of·a·geochemical·framework·for·waterresource·management·in·a· semi-arid·landscape:·Trans·Pecos·Texas,·USA¶

#### Reclamation-Funding:-\$200,000 → Total-Project-Cost:-\$319,9981

Southwest-Research-Institute, located-in-San-Antonio, Texas, will-work-with-the-Middle-Pecos-Groundwater-Conservation-District-and-Reeves-County-Groundwater-Conservation-District-to-conduct-a-geochemical-and-statistical-analysis-to-improveunderstanding-of-the-hydrology-of-two-interconnected-spring-systems-in-west-Texas, the-San-Solomon-Springs-in-Balmorhea, and-Comanche-Springs-in-Fort-Stockton. The analysis-and-resulting-database-will-be-used-to-identify-relativeamounts-of-recharge-from-different-source-areas, potential-changes-in-spring-hydrochemistry-resulting-from-land-usepractices, and-recharge-and-discharge-rates. Spring-systems-in-arid-and-semi-arid-environments-are-threatened-by-changesin-land-use-and-development, including-irrigation-practices-and-pumping-for-oil-and-gas-development, as-well-aschanges-torecharge-from-precipitation. This-project-will-help-inform-several-ongoing-efforts-in-the-area, including-efforts-to-reducegroundwater-extraction-to-increase-spring-discharge-and-restore-perennial-flows.

### GMA 12: DFCs and Explanatory Report

### **GMA 12 Explanatory Report**

- Submission to TWDB by January 30, 2022 (60 days after adoption of DFCs by resolution)
- GCD Consultants
  - Using 2017 Explanatory Report as template
  - Partitioning the writing assignments based on presentations
  - Draft by Jan. 7, 2022
- Response to Comments Limit to those received during 90-day comment period

#### DESIRED FUTURE CONDITION EXPLANATORY REPORT FOR GROUNDWATER MANAGEMENT AREA 12

This report was considered and approved by the member districts of Groundwater Management Area 12 on September 20, 2017.

Member Districts:

- 1. Brazos Valley Groundwater Conservation District
- 2. Fayette County Groundwater Conservation District
- 3. Lost Pines Groundwater Conservation District
- 4. Mid-East Texas Groundwater Conservation District
- 5. Post Oak Savannah Groundwater Conservation District

#### Prepared by:

Daniel B. Stephens & Associates, Austin, TX INTERA Incorporated, Austin, TX LBG-Guyton Associates, Houston, TX Matthew M. Uliana, P.G., Austin, TX

### **Desired Future Conditions**

| GCD                      | Aquifer: Sparta, Queen<br>City, Carrizo, Calvert<br>Bluff, Simsboro and<br>Hooper | Aquifer:<br>Yegua-Jackson      | Aquifer:<br>Brazos River<br>Alluvium |  |
|--------------------------|-----------------------------------------------------------------------------------|--------------------------------|--------------------------------------|--|
| Brazos Valley GCD        | Y                                                                                 | Y                              | Y                                    |  |
| Fayette County GCD       | Y                                                                                 | Y                              | Y                                    |  |
| Lost Pines GCD           | N                                                                                 | Y                              | Y                                    |  |
| Mid-East Texas GCD       | Y                                                                                 | Y                              | Y                                    |  |
| Post Oak Savannah<br>GCD | Y with objection as to process                                                    | Y with objection as to process | Y with objection as to process       |  |

| GCD or County            | Average Aquifer Drawdown (ft) measured from<br>January 2011 through December 2070 |            |         |                  |          |        |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------|------------|---------|------------------|----------|--------|--|--|--|
| deb or county            | Sparta                                                                            | Queen City | Carrizo | Calvert<br>Bluff | Simsboro | Hooper |  |  |  |
| Brazos Valley GCD        | 53                                                                                | 44         | 84      | 111              | 262      | 167    |  |  |  |
| Fayette County GCD       | 43*                                                                               | 73*        | 140*    |                  |          |        |  |  |  |
| Lost Pines GCD           | 22                                                                                | 28         | 134     | 132              | 240      | 138    |  |  |  |
| Mid-East Texas GCD       | 25                                                                                | 20         | 48      | 57               | 76       | 69     |  |  |  |
| Post Oak Savannah<br>GCD | 32                                                                                | 30         | 146     | 156              | 278      | 178    |  |  |  |
| Falls County             |                                                                                   |            |         |                  | 7        | 3      |  |  |  |
| Limestone County         |                                                                                   |            |         | 2                | 3        | 3      |  |  |  |
| Navarro County           |                                                                                   |            |         | 0                | 1        | 0      |  |  |  |
| Williamson County        |                                                                                   |            |         | 25               | 31       | 24     |  |  |  |

\* Fayette County GCD DFCs are for all of Fayette County.

Brazos Valley GCD DFCs are for 2000 through 2070

Note: POSGCD Carrizo DFC is 10% lower than simulated average drawdown

BVGCD DFCs are 5% higher than simulated average drawdowns for all aquifers except: Simsboro (10%), BRAA (0%)

### **Discussion Topics**

- Presentations/Memos to be Included in Appendix
  - Include presentations associated with nine factors
  - List presentation available on GMA 12 web site
  - Consultants agreed to asks Districts if additional presentations should be added
    - Comments on proposed DFCs outside of comment period
    - POSGCD position paper and presentations related to process
    - Non GCDs presentation of other factors (SW-GW interaction, economic impacts, existing permit holders, achieving balance)
- Rationale and Justification of DFC Selection
  - Discussion of POSGCD protest of process
  - Discussion of other issues

### Qualifications for GWAP

### **Discussion Topics: Low-Capacity Wells**

| Permitte<br>A   | ed Production<br>mount¤ | Number·of·Wells·<br>With·Production·less·<br>or·Equal·to· | Percent· |  |
|-----------------|-------------------------|-----------------------------------------------------------|----------|--|
| Acre∙<br>ft/yr¤ | GPM∙¤                   | Permitted Amount¤                                         | or wents |  |
| 0¤              | 0¤                      | 0¤                                                        | 0%¤      |  |
| 16¤             | 10¤                     | 99¤                                                       | 25%¤     |  |
| 40¤             | 25¤                     | 141¤                                                      | 36%¤     |  |
| 81¤             | 50¤                     | 178¤                                                      | 46%¤     |  |
| 121¤            | 75¤                     | 200¤                                                      | 51%¤     |  |
| 161¤            | 100¤                    | 227¤                                                      | 58%¤     |  |
| 322¤            | 200¤                    | 272¤                                                      | 70%¤     |  |
| 483¤            | 300¤                    | 337¤                                                      | 86%¤     |  |
| 644¤            | 400¤                    | 347¤                                                      | 89%¤     |  |
| 805¤            | 500¤                    | 369¤                                                      | 94%¤     |  |
| 966¤            | 600¤                    | 371¤                                                      | 95%¤     |  |
| 1,127¤          | 700¤                    | 371¤                                                      | 95%¤     |  |
| 1,288¤          | 800¤                    | 371¤                                                      | 95%¤     |  |
| 1,449¤          | 900¤                    | 371¤                                                      | 95%¤     |  |
| 1,610¤          | 1000¤                   | 371¤                                                      | 95%¤     |  |
| 4,025¤          | 2500¤                   | 391¤                                                      | 100%¤    |  |



# GWAP Annual Needs Assessment Draft Report

### **Overview of GANA**

**Objective**: identify eligible wells where water levels are likely to decline below the elevation of the pump setting as a result of regional groundwater production in GMA 12 within the next 10 years.

**High-Priority wells**: number of wells with pump elevation data that the GW model predicts will have water level in 2030 that are less than 15 feet above the elevation of its pump settings recorded in the POSGCD database

**Moderate-Priority well**: number of wells without pump elevation data that the GW model predicts will have water level in 2030 that are less than 15 feet above the elevation of if pump setting elevation were recorded

### **Overview of GANA**

#### Model Simulation

- Updated GAM presented at POSGCD Summit
- PS-19 DFC Run (GMA 12 adopted simulation)

#### • Wells

- 4605 Exempt Wells
- 105 low-capacity Permitted
  Wells



| - |    |   | 2 |
|---|----|---|---|
|   | ы  |   | - |
|   | ы. | 6 | 9 |

Number of exempt and permitted wells eligible for the GWAP by aquifer

| Aquifer       | Total Eligible<br>Exempt Wells | Total Eligible<br>Permitted<br>Wells | Total Eligible Wells |  |
|---------------|--------------------------------|--------------------------------------|----------------------|--|
| Sparta        | 1162                           | 22                                   | 1184                 |  |
| Queen City    | 1175                           | 16                                   | 1191                 |  |
| Carrizo       | 381                            | 10                                   | 391                  |  |
| Calvert Bluff | 745                            | 34                                   | 779                  |  |
| Simsboro      | 439                            | 13                                   | 452                  |  |
| Hooper        | 703                            | 10                                   | 713                  |  |
| TOTAL         | 4605                           | 105                                  | 4710                 |  |

### Summary of GWAP in 2020-2021

- Predictions for 2020-2021 GWAP Wells
  - 53 wells have been assisted
  - Out of the 51 wells with pumps elevation, 2021 GANA simulations identify 45 as high-priority wells
  - 16 additional wells are on waiting-list
  - Out of the 16 wells, all are identified as high-priority wells
- Predictions for Remaining Wells
  - 26\* wells identified as high priority wells
    (19 Carrizo, 3 Sparta, 3 Calvert Bluff, 1 Queen City)
  - 26 wells identified as moderate priority wells (all Carrizo)
- Comparison to 2020 GWAP
  - 56 wells identified as high priority wells

\* Reports states 24 wells, but two wells missed in the report have been recently identified as high priority wells

### Contours of Simulated Drawdown and Location of High Priority Carrizo Wells



#### Contours of Simulated Drawdown and Locations of High Priority Sparta and Calvert Bluff Wells

#### **Eligible Wells** WL > 15 ft above pump in 2030 (n=133) × × WL < 15 ft above pump in 2030 (n=3) Robertson × WL < 15 ft above pump in 2020 (n=3) No Pump Depth Information (n=1045) 10 Year Drawdown Brazos Burleson 2020 to 2030 Washington

Sparta

#### **Calvert Bluff**



# Tabulation of 53 GWAP Assisted Wells

| POSGCD Well ID | Previous Pump<br>Elevation<br>(ft-amsl) | Current Pump<br>Elevation<br>(ft-amsl) | Change in<br>Pump<br>Elevation (ft) | Simulated Water<br>above Current<br>Pump (ft) in 2030 | Simulated Available<br>Drawdown above<br>formation (ft) in 2030 |
|----------------|-----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------|
| PO-000475      | 244                                     | 144                                    | 100                                 | 16                                                    | 279                                                             |
| PO-001327      | 244                                     | 124                                    | 120                                 | 37                                                    | 145                                                             |
| PO-001328      | 235                                     | 115                                    | 120                                 | 66                                                    | 155                                                             |
| PO-001331      | 201                                     | -11                                    | 212                                 | 193                                                   | 155                                                             |
| PO-001342      | 234                                     | 54                                     | 180                                 | 146                                                   | 475                                                             |
| PO-003440      | 259                                     | 79                                     | 180                                 | 131                                                   | 133                                                             |
| PO-003444      | 190                                     | -30                                    | 220                                 | 206                                                   | 176                                                             |
| PO-004459      | 97                                      | 35                                     | 62                                  | 147                                                   | 155                                                             |
| PO-004976      | 252                                     | 52                                     | 200                                 | 124                                                   | 604                                                             |
| PO-005228      | 265                                     | 165                                    | 100                                 | 81                                                    | 127                                                             |
| PO-005231      | 234                                     | 54                                     | 180                                 | 124                                                   | 426                                                             |
| PO-005767      | ND                                      | 49                                     | ND                                  | 221                                                   | 243                                                             |
| PO-005816      | 223                                     | 51                                     | 172                                 | 255                                                   | 187                                                             |
| PO-005817      | 211                                     | 91                                     | 120                                 | 180                                                   | 243                                                             |
| PO-005821      | 149                                     | 9                                      | 140                                 | 151                                                   | 279                                                             |
| PO-006405      | 197                                     | 137                                    | 60                                  | 26                                                    | 185                                                             |
| PO-006551      | 222                                     | 52                                     | 170                                 | 124                                                   | 604                                                             |
| PO-006658      | 159                                     | -1                                     | 160                                 | 160                                                   | 279                                                             |
| PO-006815      | 201                                     | 61                                     | 140                                 | 137                                                   | 177                                                             |
| PO-006816      | 230                                     | 41                                     | 189                                 | 175                                                   | 140                                                             |
| PO-007393      | 252                                     | 112                                    | 140                                 | 150                                                   | 127                                                             |

# POSGCD versus TWDB Pumping Estimates: 2010 to 2019

| Voor | Non-shared Pumping (Acre-ft) |                |              | Shared Pumping (Acre-ft) |       |              | Total Pumping (Acre-ft) |        |              |
|------|------------------------------|----------------|--------------|--------------------------|-------|--------------|-------------------------|--------|--------------|
| real | POSGCD                       | TWDB           | % Difference | POSGCD                   | TWDB  | % Difference | POSGCD                  | TWDB   | % Difference |
| 2010 | 645                          | 2,456          | -117%        | 11984                    | 16242 | -30%         | 12,629                  | 18,698 | -39%         |
| 2011 | 2,051                        | 3,700          | -57%         | 17970                    | 16986 | 6%           | 20,021                  | 20,686 | -3%          |
| 2012 | 2,319                        | 5 <i>,</i> 004 | -73%         | 12600                    | 11664 | 8%           | 14,919                  | 16,668 | -11%         |
| 2013 | 3,732                        | 3,770          | -1%          | 11948                    | 11290 | 6%           | 15,680                  | 15,061 | 4%           |
| 2014 | 2,437                        | 3,361          | -32%         | 15108                    | 13978 | 8%           | 17,545                  | 17,338 | 1%           |
| 2015 | 3,068                        | 2,611          | 16%          | 12084                    | 11002 | 9%           | 15,152                  | 13,613 | 11%          |
| 2016 | 2,403                        | 2,487          | -3%          | 9046                     | 8939  | 1%           | 11,450                  | 11,426 | 0%           |
| 2017 | 3,252                        | 2,867          | 13%          | 8903                     | 7869  | 12%          | 12,155                  | 10,735 | 12%          |
| 2018 | 2,919                        | 2,803          | 4%           | 3926                     | 3682  | 6%           | 6,845                   | 6,484  | 5%           |
| 2019 | 3,540                        | 2,847          | 22%          | 4202                     | 2957  | 35%          | 7,742                   | 5,804  | 29%          |

#### Carrizo-Wilcox Aquifer

#### Brazos River Alluvium

| Voor | Non-shared Pumping (Acre-ft) |        |              | Shared | Shared Pumping (Acre-ft) |              |        | Total Pumping (Acre-ft) |              |  |
|------|------------------------------|--------|--------------|--------|--------------------------|--------------|--------|-------------------------|--------------|--|
| rear | POSGCD                       | TWDB   | % Difference | POSGCD | TWDB                     | % Difference | POSGCD | TWDB                    | % Difference |  |
| 2010 | 18,361                       | 17,851 | 3%           | 0      | 0                        | NA           | 18,361 | 17,851                  | 3%           |  |
| 2011 | 24,639                       | 21,119 | 15%          | 0      | 0                        | NA           | 24,639 | 21,119                  | 15%          |  |
| 2012 | 18,978                       | 25,189 | -28%         | 0      | 0                        | NA           | 18,978 | 25,189                  | -28%         |  |
| 2013 | 19,020                       | 22,731 | -18%         | 0      | 0                        | NA           | 19,020 | 22,731                  | -18%         |  |
| 2014 | 17,904                       | 15,687 | 13%          | 0      | 0                        | NA           | 17,904 | 15,687                  | 13%          |  |
| 2015 | 14,498                       | 7,913  | 59%          | 0      | 0                        | NA           | 14,498 | 7,913                   | 59%          |  |
| 2016 | 8,908                        | 14,363 | -47%         | 0      | 0                        | NA           | 8,908  | 14,363                  | -47%         |  |
| 2017 | 12,470                       | 19,861 | -46%         | 0      | 0                        | NA           | 12,470 | 19,861                  | -46%         |  |
| 2018 | 11,527                       | 20,665 | -57%         | 0      | 0                        | NA           | 11,527 | 20,665                  | -57%         |  |
| 2019 | 8,298                        | 13,490 | -48%         | 0      | 0                        | NA           | 8,298  | 13,490                  | -48%         |  |

#### POSGCD versus TWDB Pumping Estimates: 2010 to 2019 (con't)

| Voor | Non-shared Pumping (Acre-ft) |      |              | Shared Pumping (Acre-ft) |      |              | Total Pumping (Acre-ft) |      |              |
|------|------------------------------|------|--------------|--------------------------|------|--------------|-------------------------|------|--------------|
| real | POSGCD                       | TWDB | % Difference | POSGCD                   | TWDB | % Difference | POSGCD                  | TWDB | % Difference |
| 2010 | 248                          | 415  | -50%         | 517                      | 524  | -1%          | 765                     | 940  | -20%         |
| 2011 | 353                          | 439  | -22%         | 620                      | 560  | 10%          | 973                     | 998  | -3%          |
| 2012 | 429                          | 377  | 13%          | 515                      | 477  | 8%           | 944                     | 854  | 10%          |
| 2013 | 447                          | 339  | 27%          | 515                      | 496  | 4%           | 962                     | 835  | 14%          |
| 2014 | 283                          | 319  | -12%         | 510                      | 468  | 9%           | 793                     | 787  | 1%           |
| 2015 | 347                          | 314  | 10%          | 464                      | 468  | -1%          | 811                     | 783  | 4%           |
| 2016 | 82                           | 304  | -115%        | 454                      | 450  | 1%           | 536                     | 754  | -34%         |
| 2017 | 134                          | 207  | -43%         | 331                      | 449  | -30%         | 465                     | 657  | -34%         |
| 2018 | 640                          | 201  | 104%         | 343                      | 511  | -39%         | 983                     | 712  | 32%          |
| 2019 | 282                          | 195  | 36%          | 365                      | 516  | -34%         | 646                     | 711  | -9%          |

#### Sparta Aquifer

#### Queen City

| Voor | Non-shared Pumping (Acre-ft) |       |              | Shared Pumping (Acre-ft) |      |              | Total Pumping (Acre-ft) |       |              |
|------|------------------------------|-------|--------------|--------------------------|------|--------------|-------------------------|-------|--------------|
| rear | POSGCD                       | TWDB  | % Difference | POSGCD                   | TWDB | % Difference | POSGCD                  | TWDB  | % Difference |
| 2010 | 27                           | 788   | -187%        | 232                      | 231  | 0%           | 259                     | 1,019 | -119%        |
| 2011 | 95                           | 1,302 | -173%        | 307                      | 306  | 0%           | 402                     | 1,608 | -120%        |
| 2012 | 64                           | 1,709 | -186%        | 248                      | 248  | 0%           | 312                     | 1,957 | -145%        |
| 2013 | 40                           | 1,252 | -188%        | 249                      | 250  | 0%           | 289                     | 1,502 | -135%        |
| 2014 | 83                           | 1,189 | -174%        | 238                      | 250  | -5%          | 321                     | 1,439 | -127%        |
| 2015 | 17                           | 1,037 | -194%        | 265                      | 265  | 0%           | 282                     | 1,303 | -129%        |
| 2016 | 21                           | 936   | -191%        | 242                      | 242  | 0%           | 263                     | 1,178 | -127%        |
| 2017 | 41                           | 1,059 | -185%        | 275                      | 275  | 0%           | 315                     | 1,334 | -124%        |
| 2018 | 41                           | 1,042 | -185%        | 272                      | 272  | 0%           | 313                     | 1,314 | -123%        |
| 2019 | 6                            | 967   | -198%        | 269                      | 221  | 20%          | 275                     | 1,188 | -125%        |

#### POSGCD versus TWDB Pumping Estimates: 2010 to 2019 (con't)

| Voor | Non-shared Pumping (Acre-ft) |      |              | Shared Pumping (Acre-ft) |      |              | Total Pumping (Acre-ft) |      |              |
|------|------------------------------|------|--------------|--------------------------|------|--------------|-------------------------|------|--------------|
| Tear | POSGCD                       | TWDB | % Difference | POSGCD                   | TWDB | % Difference | POSGCD                  | TWDB | % Difference |
| 2010 | 22                           | 533  | -184%        | 165                      | 0    | NA           | 187                     | 533  | -96%         |
| 2011 | 113                          | 582  | -135%        | 210                      | 0    | NA           | 323                     | 582  | -57%         |
| 2012 | 73                           | 498  | -149%        | 160                      | 0    | NA           | 233                     | 498  | -73%         |
| 2013 | 47                           | 432  | -161%        | 117                      | 0    | NA           | 164                     | 432  | -90%         |
| 2014 | 34                           | 374  | -167%        | 67                       | 0    | NA           | 101                     | 374  | -115%        |
| 2015 | 15                           | 336  | -183%        | 111                      | 0    | NA           | 126                     | 336  | -91%         |
| 2016 | 43                           | 357  | -157%        | 105                      | 0    | NA           | 148                     | 357  | -83%         |
| 2017 | 29                           | 368  | -171%        | 152                      | 0    | NA           | 181                     | 368  | -68%         |
| 2018 | 51                           | 382  | -153%        | 109                      | 0    | NA           | 160                     | 382  | -82%         |
| 2019 | 13                           | 351  | -186%        | 133                      | 0    | NA           | 145                     | 351  | -83%         |

#### Yegua-Jackson Aquifer

#### Other

| Vear | Non-shared Pumping (Acre-ft) |                |              | Shared | d Pumpir | ng (Acre-ft) | Total Pumping (Acre-ft) |                |              |
|------|------------------------------|----------------|--------------|--------|----------|--------------|-------------------------|----------------|--------------|
| rear | POSGCD                       | TWDB           | % Difference | POSGCD | TWDB     | % Difference | POSGCD                  | TWDB           | % Difference |
| 2010 | 991                          | 2,241          | -77%         | 0      | 0        | NA           | 991                     | 2,241          | -77%         |
| 2011 | 1,575                        | 4,062          | -88%         | 0      | 0        | NA           | 1,575                   | 4,062          | -88%         |
| 2012 | 1,011                        | 5 <i>,</i> 939 | -142%        | 0      | 0        | NA           | 1,011                   | 5 <i>,</i> 939 | -142%        |
| 2013 | 1,291                        | 4,388          | -109%        | 0      | 0        | NA           | 1,291                   | 4,388          | -109%        |
| 2014 | 559                          | 3 <i>,</i> 968 | -151%        | 0      | 0        | NA           | 559                     | 3 <i>,</i> 968 | -151%        |
| 2015 | 469                          | 3,116          | -148%        | 0      | 0        | NA           | 469                     | 3,116          | -148%        |
| 2016 | 581                          | 3 <i>,</i> 027 | -136%        | 0      | 0        | NA           | 581                     | 3,027          | -136%        |
| 2017 | 676                          | 3,709          | -138%        | 0      | 0        | NA           | 676                     | 3,709          | -138%        |
| 2018 | 1,028                        | 3 <i>,</i> 648 | -112%        | 0      | 0        | NA           | 1,028                   | 3,648          | -112%        |
| 2019 | 898                          | 3,103          | -110%        | 0      | 0        | NA           | 898                     | 3,103          | -110%        |

### POSGCD versus TWDB Pumping Estimates: 2010 to 2019 (con't)

#### City of Rockdale Pumping

City of Snook Pumping

| Veer |        | % Difforance |            |               |  |
|------|--------|--------------|------------|---------------|--|
| real | POSGCD | TWDB         | Difference | 78 Difference |  |
| 2010 | 995    | 990          | 5          | 1%            |  |
| 2011 | 1178   | 1179         | -1         | 0%            |  |
| 2012 | 1074   | 1074         | 0          | 0%            |  |
| 2013 | 1141   | 931          | 210        | 20%           |  |
| 2014 | 861    | 923          | -62        | -7%           |  |
| 2015 | 634    | 786          | -152       | -21%          |  |
| 2016 | 0      | 894          | -894       | NA            |  |
| 2017 | 1094   | 1087         | 7          | 1%            |  |
| 2018 | 0      | 866          | -866       | NA            |  |
| 2019 | 833    | 831          | 2          | 0%            |  |

| Voar |        | % Difference |            |               |
|------|--------|--------------|------------|---------------|
| Tear | POSGCD | TWDB         | Difference | 78 Difference |
| 2010 | 137    | 137          | 0          | 0%            |
| 2011 | 169    | 177          | -8         | -4%           |
| 2012 | 132    | 132          | 0          | 0%            |
| 2013 | 145    | 145          | 0          | 0%            |
| 2014 | 143    | 143          | 0          | 0%            |
| 2015 | 119    | 119          | 0          | 0%            |
| 2016 | 113.3  | 113          | 0          | 0%            |
| 2017 | 0      | 113          | -113       | NA            |
| 2018 | 0      | 132          | -132       | NA            |
| 2019 | 0      | 132          | -132       | NA            |

#### **Comparison of Aquifers**

| SurveyName                       | County             | TWDB Aquifer                                | POSGCD Aquifer |
|----------------------------------|--------------------|---------------------------------------------|----------------|
| APACHE HILLS SUBDIVISION         | Burleson           | Sparta                                      | Yegua-Jackson  |
| BIRCH CREEK RECREATION INC       | Burleson           | Sparta                                      | Yegua-Jackson  |
| CADE LAKES WSC                   | Burleson           | Sparta before 2010; Other from 2010         | Carrizo-Wilcox |
| CITY OF ROCKDALE                 | Milam              | Carrizo-Wilcox before 2011; Other from 2010 | Carrizo-Wilcox |
| CLARA HILLS CIVIC ASSOCIATION    | Burleson           | Sparta; Yegua-Jackson in 2010 only          | Yegua-Jackson  |
| GAUSE WSC                        | Milam              | Carrizo-Wilcox; Other in 2010 only          | Carrizo-Wilcox |
| LAKEVIEW MARSHALL OAK SOMERVILLE | Burleson           | Sparta                                      | Yegua-Jackson  |
| LYONS WSC                        | Burleson           | Sparta and Carrizo-Wilcox                   | Sparta         |
| MARLOW WSC                       | Milam              | Carrizo-Wilcox before 2011; Other from 2011 | Carrizo-Wilcox |
| MILANO WSC                       | Burleson and Milam | Carrizo-Wilcox and Other                    | Carrizo-Wilcox |
| SOUTHWEST MILAM WSC              | Milam              | Carrizo-Wilcox and Other                    | Carrizo-Wilcox |
| WHISPERING WOODS                 | Burleson           | Sparta                                      | Yegua-Jackson  |
| YEGUA WATER COMPANY              | Burleson           | Sparta                                      | Yegua-Jackson  |

### **Discussion Topics**

- Estimate of Economic Impact of Lower Water Levels
  - Current and Future Well Design
  - Pump Capacities
  - Electrical Costs
- Guidelines for Drillers
- Model Layers
- Update GAM to Include Other Pumping
  - Approach
  - POSGCD versus TWDB Estimated Pumping for 2010 to 2019

### Guidance Document 2021 Draft Report

# **Overview of Changes**

- Update Monitoring Well Information
- Aquifer Assignments
- Addition of Transducer Wells
- Averaging of Monitoring Data for 1-year
- Drawdown Calculations
- Addition of Transducer Wells
- Data Analysis Methods

# Monitoring Wells



#### Total= 323 (109 in 2018)

#### w/Transducer =55 (20 in 2018)



# **Monitoring Wells**

Well diagrams







# **Monitoring Wells Information**

| POSGCD Well<br>Number | State<br>Well<br>Number | Latitude<br>(decimal<br>degrees) | Longitude<br>(decimal<br>degrees) | Surface<br>Elevation<br>(ft amsl) | Depth<br>(ft) | Screened<br>Intervals | TWDB Aquifer                                               | POSGCD<br>Aquifer<br>(First Unit) | POSGCD<br>Aquifer<br>(Second<br>Unit) | County | Shallow? | Transducer |
|-----------------------|-------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------|-----------------------|------------------------------------------------------------|-----------------------------------|---------------------------------------|--------|----------|------------|
| PO-000020             | 5917505                 | 30.6811                          | -96.9480                          | 427                               | 540           | 498-540               | 124SMBR - Simsboro<br>Sand Member of<br>Rockdale Formation | Simsboro                          |                                       | Milam  | No       |            |
| PO-000025             | 5917409                 | 30.6685                          | -96.9869                          | 516                               | 391           | 226-290,<br>320-390   | 124HOOP - Hooper<br>Formation                              | Simsboro                          | Hooper                                | Milam  | Yes      | Yes        |
| PO-000026             | 5917103                 | 30.7238                          | -96.9830                          | 457                               | 410           | 115-410               | 124HOOP - Hooper<br>Formation                              | Hooper                            | Simsboro                              | Milam  | No       |            |
| PO-000053             | 5909901                 | 30.7841                          | -96.8955                          | 428                               | 169           | 109-169               | 124SMBR - Simsboro<br>Sand Member of<br>Rockdale Formation | Calvert<br>Bluff                  | Simsboro                              | Milam  | Yes      | Yes        |
| PO-000059             | 5911402                 | 30.7971                          | -96.7347                          | 426                               | 323           | 307-323               | 124CABF - Calvert<br>Bluff Formation                       | Carrizo                           |                                       | Milam  | Yes      |            |
| PO-000073             | 5910907                 | 30.7809                          | -96.7850                          | 378                               | 440           | 410-430               | 124CABF - Calvert<br>Bluff Formation                       | Calvert<br>Bluff                  |                                       | Milam  | No       | Yes        |
| PO-000077             | 5919103                 | 30.7406                          | -96.7208                          | 432                               | 522           | 507-522               | 124CABF - Calvert<br>Bluff Formation                       | Calvert<br>Bluff                  |                                       | Milam  | No       |            |
| PO-000084             | 5919302                 | 30.7283                          | -96.6323                          | 338                               | 45            | -                     | 124QNCT - Queen City<br>Sand of Claiborne<br>Group         | Brazos<br>River<br>Alluvium       |                                       | Milam  | Yes      |            |

#### **Coordination with TWDB on Well Information**

(memo sent June 2021)

- Requested Changes : 1) 134 Well locations
  - 2) 30 Aquifer assignments
  - 3) 13 wells with different completion information
- Status of Review: 1) Well locations approved, waiting for TWDB database update
  - 2) Well construction approved except for one well
  - 3) Will not complete aquifer assignment until 2022

#### Monitoring Well Average Period: Jan 1 – April 30



#### **Determine Monthly Average**



Figure 5-3 Schematic diagram showing the calculations used to determine monthly values for a well with only manual measurements (left) and for a well with transducer measurements (right)

#### Three-year Average and Drawdown Calculations



Evaluated options for selection of data points for calculating average drawdown for base year and end year. Determined that the calculation should not be restricted to common well locations.

### Data Analysis Method for Calculating Average Drawdowns



Figure 5-5 Diagrams comparing final interpolated water level surfaces results for the Total Simsboro Aquifer Management Zone using (a) topo to raster, (b kriging with detrending, and (c) kriging without detrending

### Data Analysis Method for Calculating Average Drawdowns



Figure J-2 Diagram showing steps to combine simulated water level surface (left) and Kriged residuals (middle; simulated minus measured water level) to generate final water level surface (right).

### **Discussion Topics**

- Aquifer Associations
  - GAM Model Layers
  - TWDB Selection
  - GMA 12
  - Nearby Districts
- Multiple Data Analysis
  - Evaluation a part of 2022 Compliance report
  - Indicator Wells

### Monitoring Compliance Update

# Vista Ridge

• Compliance

| Month   |                                                       | Maximum Instantaneous Pumping Rate |            |            |             |            |             |             |            |  |  |  |  |
|---------|-------------------------------------------------------|------------------------------------|------------|------------|-------------|------------|-------------|-------------|------------|--|--|--|--|
|         | CW1                                                   | CW2                                | CW3        | CW4        | CW5         | CW6        | CW7         | CW8         | CW9        |  |  |  |  |
| Nov-21  | 956                                                   | 1122                               | 1125       | 841        | 925         | 950        | 1129        | 1101        | 902        |  |  |  |  |
|         |                                                       |                                    |            |            |             |            |             |             |            |  |  |  |  |
| Month   | Date & Time of the Maximum Instantaneous Pumping Rate |                                    |            |            |             |            |             |             |            |  |  |  |  |
| wonth   | CW1                                                   | CW2                                | CW3        | CW4        | CW5         | CW6        | CW7         | CW8         | CW9        |  |  |  |  |
| Nov. 24 | 11/3/2021                                             | 11/5/2021                          | 11/5/2021  | 11/4/2021  | 11/8/2021   | 11/2/2021  | 11/5/2021   | 11/8/2021   | 11/5/2021  |  |  |  |  |
| 100-21  | 2:00:00 AM                                            | 2:00:00 AM                         | 3:00:00 PM | 7:00:00 PM | 11:00:00 AM | 9:00:00 AM | 11:00:00 PM | 11:00:00 AM | 5:00:00 AM |  |  |  |  |
|         |                                                       |                                    |            |            |             |            |             |             |            |  |  |  |  |
| Month   |                                                       | Number of Daily Violations         |            |            |             |            |             |             |            |  |  |  |  |
| WOItti  | CW1                                                   | CW2                                | CW3        | CW4        | CW5         | CW6        | CW7         | CW8         | CW9        |  |  |  |  |
| Nov-21  | 0                                                     | 0                                  | 0          | 0          | 0           | 0          | 0           | 0           | 0          |  |  |  |  |

| Month  |            |            |            |             |             |            |            |             |            |  |
|--------|------------|------------|------------|-------------|-------------|------------|------------|-------------|------------|--|
| wonun  | PW9        | PW10       | PW11       | PW12        | PW13        | PW14       | PW15       | PW16        | PW17       |  |
| Nov-21 | 2974       | 2980       | 2966       | 2965        | 2982        | 2478       | 2973       | 2964        | 2985       |  |
|        |            |            |            |             |             |            |            |             |            |  |
| Manth  |            |            |            |             |             |            |            |             |            |  |
| wonth  | PW9        | PW10       | PW11       | PW12        | PW13        | PW14       | PW15       | PW16        | PW17       |  |
| Nov 21 | 11/25/2021 | 11/22/2021 | 11/19/2021 | 11/21/2021  | 11/15/2021  | 11/4/2021  | 11/9/2021  | 11/10/2021  | 11/9/2021  |  |
| 100-21 | 1:00:00 PM | 2:00:00 AM | 7:00:00 PM | 11:00:00 PM | 12:00:00 PM | 3:00:00 PM | 4:00:00 AM | 11:00:00 AM | 7:00:00 PM |  |
|        |            |            |            |             |             |            |            |             |            |  |
| Month  |            |            |            |             |             |            |            |             |            |  |
| wonun  | PW9        | PW10       | PW11       | PW12        | PW13        | PW14       | PW15       | PW16        | PW17       |  |
| Nov-21 | 0          | 0          | 0          | 0           | 0           | 0          | 0          | 0           | 0          |  |

- Monitoring Equipment
- QA/QC Protocols

# Project 130

• Compliance

| Month  | Maximum Instantaneous Pumping Rate |                        |       |  |  |  |
|--------|------------------------------------|------------------------|-------|--|--|--|
| Wonth  | PBPW1                              | PBPW 2                 |       |  |  |  |
| Nov-21 | 2090                               | 2332                   |       |  |  |  |
| Month  | Maximum of Daily Ave               | rage i130 Pumping Rate |       |  |  |  |
| Wonth  | PBPW1                              | PBPW 2                 |       |  |  |  |
| Nov-21 | 11/2/2021                          | 11/17/2021             |       |  |  |  |
|        | 11:00:00 P M                       | 10:00:00 AM            |       |  |  |  |
| Marth  | Number o                           | f Daily Violations     |       |  |  |  |
| wonth  | PBPW1                              | PBPW2                  | Total |  |  |  |
| Nov-21 | 0                                  | 0 0                    |       |  |  |  |

- Monitoring Equipment
- QA/QC Protocols

### **SLR** Properties

- Compliance
- Monitoring Equipment
- QA/QC Protocols

# **Questions**?

