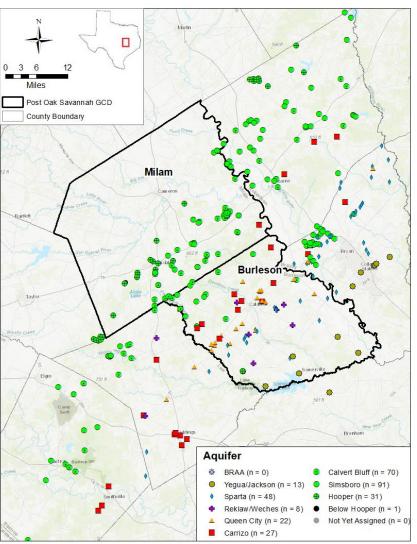

Update on Activities Related to DFC Compliance, PDLs, Monitoring, Impact Assessment & MS Report

August 10, 2021

Agenda

- Compliance Assessment
 - DFCs
 - PDLs
- Guidance Documents
 - On-going Updates
 - Expanded Analysis
- GAM Improvements
 - Technical Approach
 - Revised Model Results
 - Suggest for Future Work
- Management Strategy Report
 - Comments
 - Next Steps



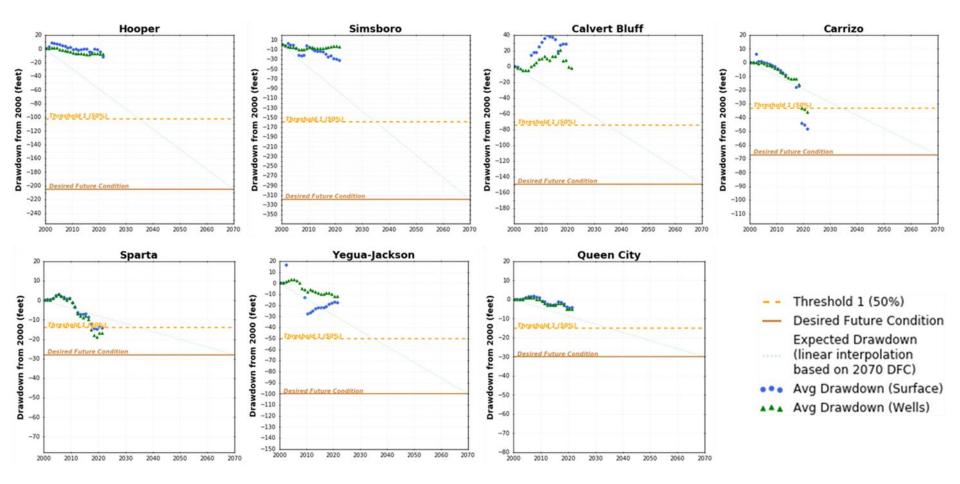
Compliance Assessment

Monitoring Wells

DFCs

PDLs

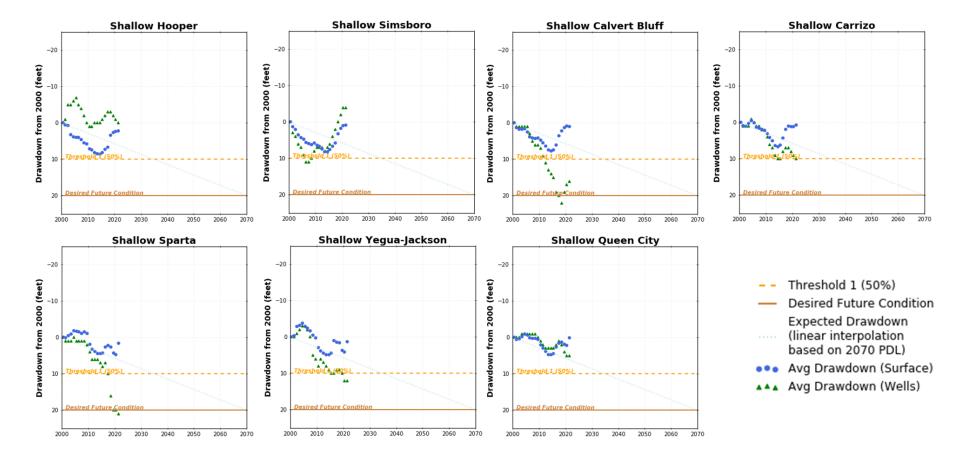
GEOSCIENCE & ENGINEERING SOLUTIONS


Calculated Compliance with DFCs: Tables

		Drawdown from							
Management	DFC	2000 to 2010	2000 to 2015	2000 to 2016	2000 to 2017	2000 to 2018	2000 to 2019	2000 to 2020	2000 to 2021
Zone		Calculated							
		Drawdown							
		(% of DFC)							
Yegua Jackson	100	27.5	22.3	22.2	21.0	19.2	18.1	17.1	17.8
Tegua Jackson		27.5%	22.3%	22.2%	21.0%	19.2%	18.1%	17.1%	17.80%
Sparta	28	1.4	6.9	8.6	12.3	14.5	15.0	13.8	14.3
Sparta		5.0%	24.8%	30.6%	43.8%	51.8%	53.4%	49.3%	51.20%
Queen City	30	0.9	2.7	1.3	1.6	2.4	3.9	4.4	4.2
Queen City		3.0%	8.9%	4.4%	5.5%	8.0%	13.0%	14.6%	14.10%
Carrizo	67	-11.1	-4.3	-3.8	18.1	17.3	44.1	45.5	48.2
Garrizo		-16.6%	-6.4%	-5.7%	27.0%	25.8%	65.9%	67.9%	71.90%
Calvert Bluff	149	-29.9	-34.6	-19.0	-27.0	-28.3	-28.4	-57.8	-56.5
(Upper Wilcox)	149	-20.1%	-23.2%	-12.7%	-18.1%	-19.0%	-19.1%	-38.8%	-37.90%
Simsboro	210	5.0	14.9	19.0	24.7	22.4	28.3	30.3	32
(Middle Wilcox)	318	1.6%	4.7%	6.0%	7.8%	7.0%	8.9%	9.5%	10.10%
Hooper	205	5.4	-1.3	2.2	3.6	-0.7	-0.5	3.0	10.7
(Lower Wilcox)	205	2.6%	-0.6%	1.0%	1.8%	-0.3%	-0.2%	1.5%	5.20%

Threshold 1 = 50% of DFC Threshold 2 = 60% of DFC Threshold 3 = 75% of DFC

Calculated Compliance with DFCs: Graphs


Calculated Compliance with PDLs: Tables

		Drawdown						
Management Zone	PDL	from 2000 to 2015	from 2000 to 2016	from 2000 to 2017	from 2000 to 2018	from 2000 to 2019	from 2001 to 2020	from 2000 to 2021
Zone		Calculated						
		Drawdown						
		(% of DFC)						
Yegua Jackson		4.40	0.93	1.46	1.60	3.63	4.07	1.2
Tegua Jackson	20	22%	5%	7%	8%	18%	20%	6%
Sparta		4.3	2.6	2.1	2.7	4.2	4.7	1.6
Oparta	20	21%	13%	11%	13%	21%	24%	8%
Queen City		4.4	2.6	1.6	1.2	1.9	2.2	0.03
Queen only	20	22%	13%	8%	6%	10%	11%	0%
Carrizo		6.1	4.3	1.9	1.0	1.1	1.1	0.66
0011120	20	31%	21%	10%	5%	6%	6%	3%
Calvert Bluff		7.3	6.1	3.5	2.3	1.4	0.8	0.96
(Upper Wilcox)	20	37%	30%	18%	11%	7%	4%	5%
Simsboro		7.6	6.6	5.8	3.2	1.8	1.0	0.87
(Middle Wilcox)	20	38%	33%	29%	16%	9%	5%	4%
Hooper		8.1	7.3	6.7	3.3	2.6	2.3	2.2
(Lower Wilcox)	20	40%	37%	33%	17%	13%	12%	11%

Threshold 1 = 50% of DFC Threshold 2 = 60% of DFC Threshold 3 = 75% of DFC

Calculated Compliance with PDLs: Graphs

Guidance Document

Monitoring Network

- New Wells
- Location
- Aquifer Assignment
- Мар
- Well Diagrams

Compliance Calculations

- Evaluations updated through 2021
- Additional explanations & discussions
- Added two options that involve geostastistics because:
 - Desired to have a defendable basis as practicable, use of several viable approaches improves our understanding of the groundwater system
 - Additional monitoring data supports more advanced techniques
 - Account for limitation of topo2raster

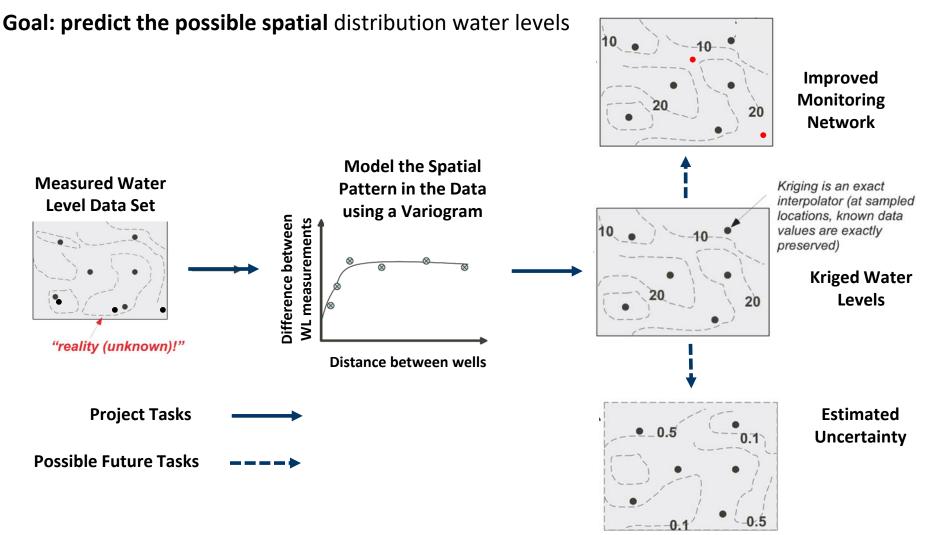
Geostatistics: Overview

Geostatistics is a collection of numerical techniques for the characterization of spatial attributes

•Defensibility: Best-science estimates (BSEs), industry-leading techniques
•Robust Analysis: Allows inclusion of secondary data that is correlated to water level data
•Software: Algorithms are known and code is available for review (not a blackbox)
•Reproducibility/transparency: Remove any guesswork from annual drawdown maps
•Risk reduction (no surprises): any uncertainty in estimates are known and predictable

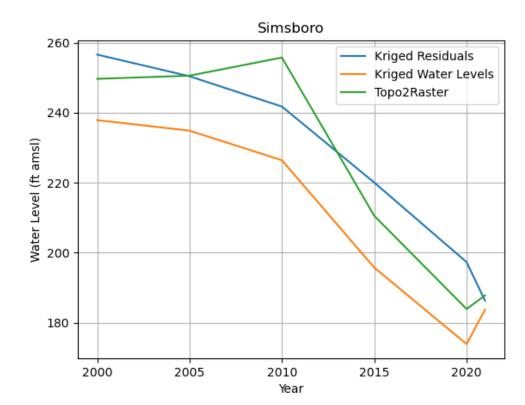
Tobler's 1st Law of Geography

"Everything is related to everything else, but near things are more related than distant things. (1970)"

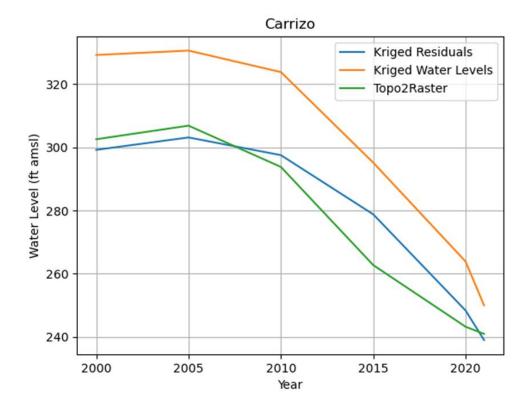


Geostatistical Options

- Interpolate Water Levels using Kriging
 - Similar to Topo2raster
 - Accounts for coorelations
 - Probably the most used approach for Water Levels
- Interpolate Water Levels using Kriging after Detrending Using GAM
 - Improves on Kriging by accounting for trends and effects of pumping, SW-GW interaction, and regional hydraulic gradients
 - Provides stability to calculations in areas with sparse well coverage or changes or where wells are added


Application of Geostastics for Interpolating Water Levels

Comparison of Three Options: Simsboro


Simsboro						
Method	Year	Avg. Water Level (ft amsl)	Drawdown (ft) Since 2000			
	2000	257	0			
	2005	250	6			
Kriged	2010	242	15			
Residuals	2015	220	37			
	2020	197	59			
	2021	186	70			
	2000	238	0			
Ī	2005	235	3			
Kriged Water	2010	226	11			
Levels	2015	196	42			
	2020	174	64			
	2021	184	54			
	2000	250	0			
	2005	251	-1			
TanalDastan	2010	256	-6			
Topo2Raster	2015	211	39			
	2020	184	66			
	2021	188	62			

Comparison of Three Options: Carrizo

Carrizo						
Method	Year	Avg. Water Level (ft amsl)	Drawdown (ft) Since 2000			
	2000	299	0			
	2005	303	-4			
Kriged	2010	298	2			
Residuals	2015	279	20			
	2020	248	51			
	2021	239	60			
	2000	329	0			
	2005	331	-1			
Kriged Water	2010	324	5			
Levels	2015	295	34			
	2020	264	65			
	2021	250	79			
	2000	303	0			
	2005	307	-4			
Tomo?Doofer	2010	294	9			
Topo2Raster	2015	263	40			
	2020	243	59			
	2021	241	62			

GAM Improvements

Important Questions about Models that Should be Addressed before Using their Results for Decision-Making

- How reliable are the model predictions?
- Is there sufficient data to develop a reliable model?
- How can you evaluate uncertainty in a model? Does uncertainty change with location and over time?
- How far into the future can you reliably forecast water levels?
- What are the unknowns that are important to predictions?
- Where there is sparse data, can you get a reliable prediction?
- Are some model predictions better than others?
- How should POSGCD use modeling to help manage groundwater resources wisely?

Traditional Approach for Developing a Groundwater Model

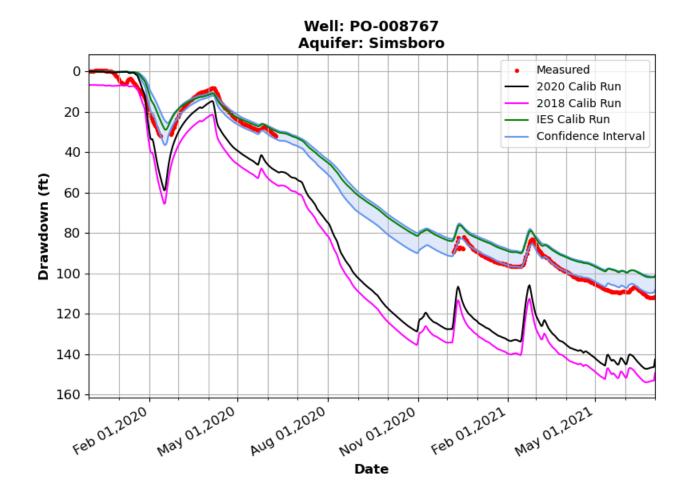
- Goal is to generate a single computer model
- Calibrate Model
 - A modeler select best set of aquifer parameters and historical water levels
 - A modeler or a computer continually adjusts model parameters until an acceptable match is made to water levels
- Result is a single model that often fits selected data points relatively well

Key Points Regarding Calibration of SP/QC/CW GAM

- Given
 - Less than 0.05% of aquifer has been characterized
 - Aquifer 500+ thick and are considered be uniform not vertical variation
 - No measurements of vertical hydraulic conductivity at scale of aquifer layers
 - Aquifer boundaries have not been properly documented
 - Historical pumping has large uncertainty and location are often estimated
 - Water levels are spotty, are measured in wells that are pumping, and in wells that often intersect about 50 feet of the aquifer thickness
- If seems reasonable that the reliability of a model prediction is as important

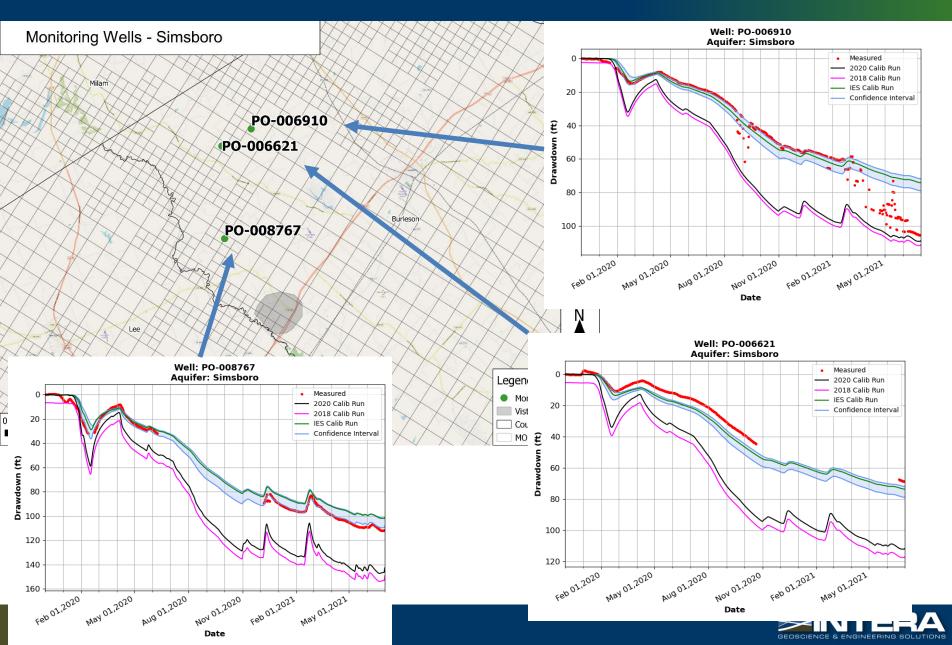
Revised Approach for Developing a Groundwater Model For POSGCD: Multiple Models (or IES)

- Goal is to generate as many models that fit the data reasonably well (100s to 1000s of models)
- Modeler sets the best estimate and ranges for aquifer properties in model areas and ranges for acceptable fits to water levels
 - Computer generates the initial properties of the different models
 - Computer adjusts model parameters and rerun model until an acceptable match is made to water levels or model is dropped
- Multiple models are generated

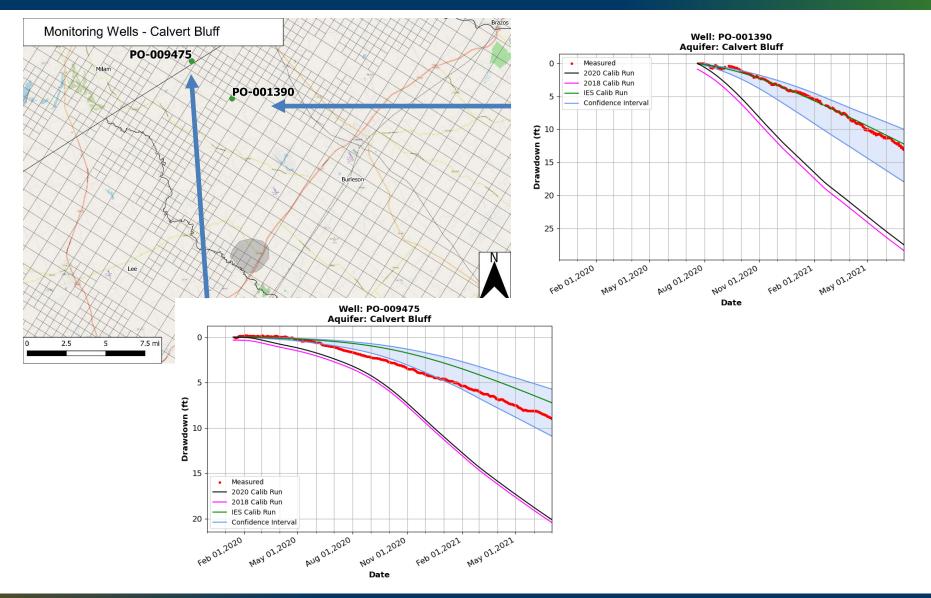


GAM Recalibration Criteria

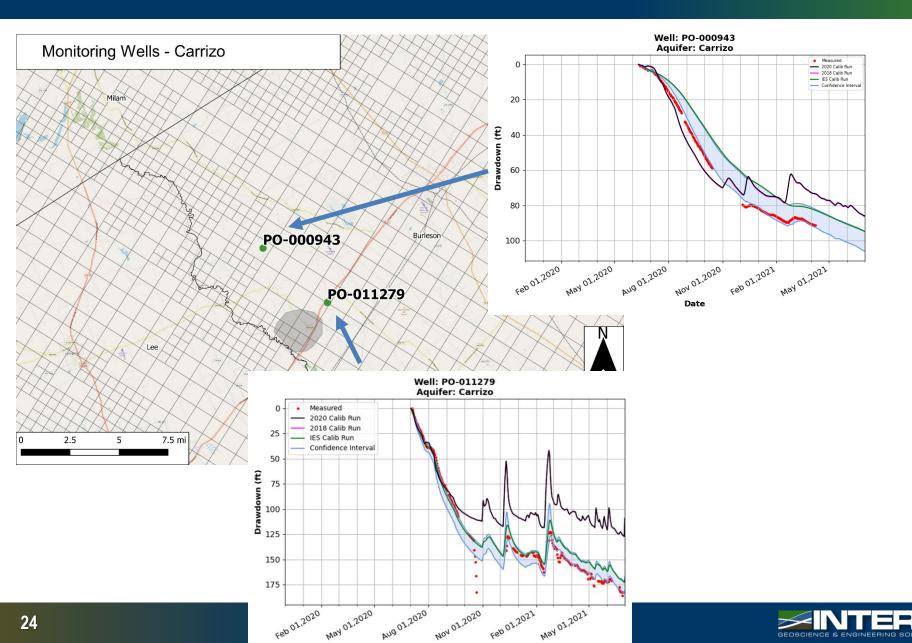
- Same historical data used to calibrate the 2018 GAM from 1929 to 2010
- Aquifer test data from Vista Ridge Simsboro wells used in 2020 GAM Update Plus Vista Ridge Carrizo Wells
- Predictions of drawdown from Vista Ridge Wells from December 2019 to June 2021
 - ignores pumping from other wells
 - monthly time steps with constant pumping



Example Hydrograph Used For "Vista Ridge" Calibration

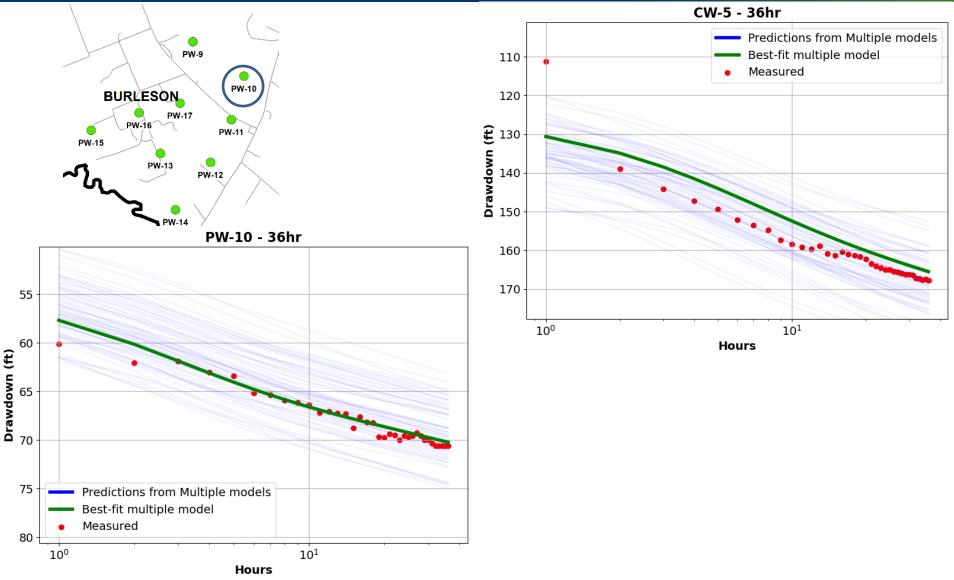


Simsboro Monitoring Wells

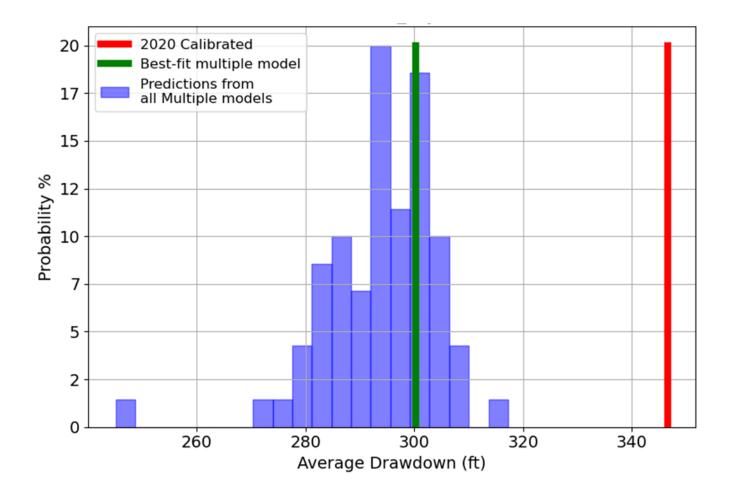


Calvert Bluff Monitoring Wells

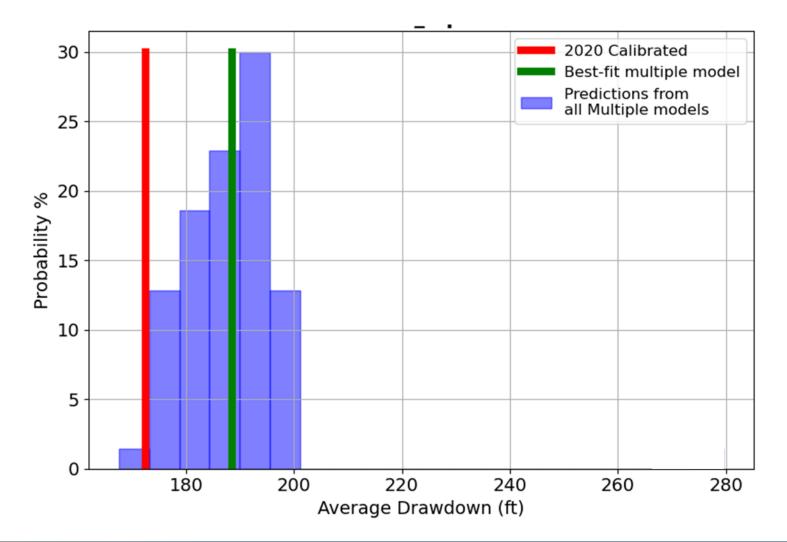
Carrizo Monitoring Wells



Measured & Simulated Drawdown for 23-day Aquifer Pumping Test at Vista Ridge Pumping Well PW-13:



Measured & Simulated Drawdown for 36-hour Aquifer Pumping Tests at VR Pumping Wells CW-5 and CW-9



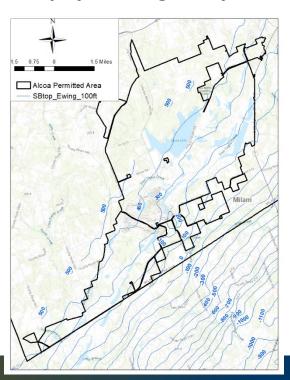
Simsboro DFC: Preliminary Results

Carrizo DFC: Preliminary Results

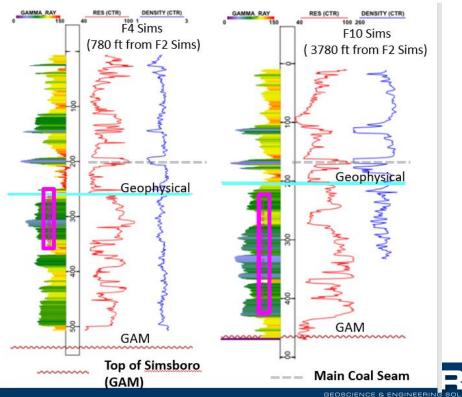
Proposal for Continuing GAM Update/Improvements

- Collaborative Funding and Partners
- Groundwater Management Policy/Science Issues
- Technical Issues Related to POSGCD and GMA 12
- Local-scale issues and data acquisition

Benefits include a well vetted model data, modeling approach, modeling results, and analysis of model results.

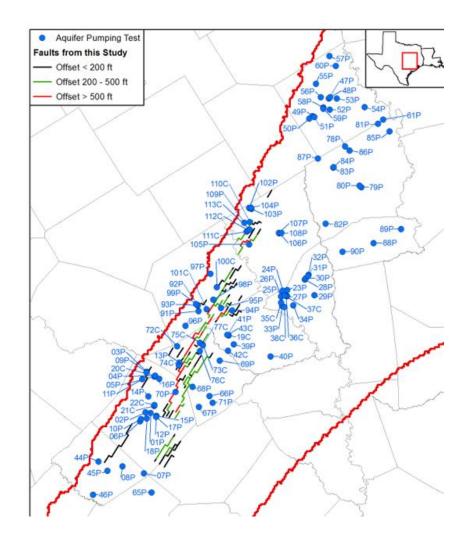

Groundwater Management Science/Policy Issues

- Improve reliability and quantifying uncertainty in model predictions
- Improve defining sustainable pumping and total estimated recoverable storage
- Establish protocols for forecasting/prediction of water levels
- Develop guidelines for expanding GAMs from tools primary for regional planning tools to also tools for GCDs to assess localscale issues
- Incorporate relational information in GAM to improve interpretation of water levels for assessing DFC compliance
- Improve overall utility, useability, and transparency o f models


Technical Issues Related to POSGCD & GMA 12

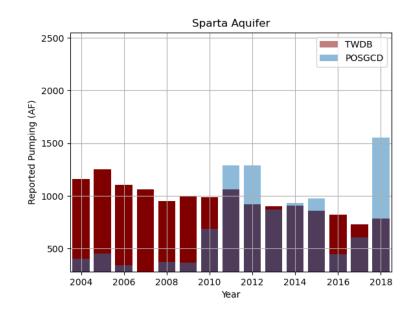
- Aquifer Surfaces
 - GAM uses original surfaces show surfaces are not properly documented
 - Surfaces developed by INTERA using geophysical logs
 - 11 of ALCOA "Simsboro" wells were 100% in the Calvert Bluff

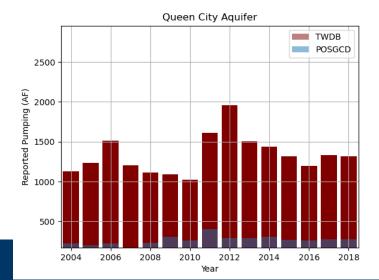
31


Top of Simboro based on Geophysical Log Analysis

Comparison of GAM-based and Geophysical-based Top of Simsboro

Technical Issues Related to Modeling (con't)


- Constraining Aquifer
 Properties at Local Scale
 - Simulate aquifer pumping tests as part of calibration
 - Numerous tests available –
 additional results coming with
 ALCOA and other future permits



Technical Issues Related to POSGCD & GMA 12

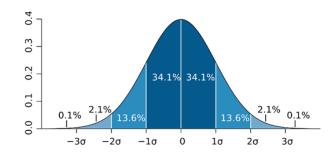
- Transition from only "Vista-Ridge" Pumping to All Pumping
 - Expand historical pumping for GAM from 2010 to present Resolve discrepancies between TWDB pumping estimates and POSGCD reported pumping
 - Options for receiving more timely updates of monthly estimates of pumping in POSGCD

Management Strategies Report

Table of Contents

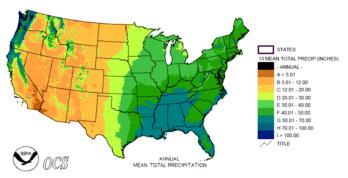
1.0	INTRO	INTRODUCTION1						
	1.1	Report Objectives						
	1.2	Report Organization2						
2.0	OVER	VIEW OF DISTRICT HYDROGEOLOGY AND MANAGEMENT ZONES						
	2.1	Hydrogeology3						
	2.2	Management Zones						
3.0	DISTR	DISTRICT MANAGEMENT GOALS9						
	3.1	Chapter 36 of the Texas Water Code9						
	3.2	Enabling Legislation9						
	3.3	Management Plan9						
	3.4	Mission Statement10						
4.0	GROU	GROUNDWATER MANAGEMENT						
	4.1	Components of Groundwater Management11						
	4.2	Connectivity of Groundwater Management Strategies to Other Groundwater						
		Management Components						
5.0	MAN	AGEMENT STRATEGIES RELATED TO GROUNDWATER RESOURCES						
	5.1	Description of Management Strategies14						
	5.2	Role of Science in Management Strategies15						
6.0	EXTE	EXTERNAL FACTORS OF POTENTIAL IMPORTANCE TO THE DISTRICT'S IMPLEMENTATION OF						
	MANAGEMENT STRATEGIES							
	6.1	Regulatory Authority						
	6.2	Science						
	6.3	Joint Planning						
	6.4	Adjacent District Policies and Pumping19						
	6.5	State Water Needs						
	6.6	Interests of Landowners and Well Owners20						
	6.7	Environmental Impacts						
	6.8	Modifications to the Water Code21						
	6.9	Court Findings						

Table of Contents (con't)


7.0	OBSE	OBSERVATIONS AND MANAGEMENT ISSUES OF IMPORTANCE TO THE DISTRICT'S ACHIEVEMENT					
	OF IT:	S MANAG	EMENT GOALS	23			
	7.1	Rule 16.4 and Threshold Levels					
	7.2	Finding	from the Groundwater Assistance Program Annual Needs Assessment	24			
7.3	7.3	Management Issues Affecting the Monitoring and Enforcement of Production and					
		Drawd	own Thresholds				
		7.3.1	Definition of Unreasonable Impacts to Groundwater and Surface Water				
		Maxim	um Production Volumes Based on Permitted Acreage	25			
		7.3.2	Operating and Transport Permit Fees	26			
		7.3.3	Boundaries for Management Zones Associated with Desired Future Cor	ditions			
			26				
		7.3.4	Time Intervals Associated with Desired Future Conditions	27			
		7.3.5	Compatibility of DFCs and PDLs	28			
		7.3.6	Enforcement of DFCs and PDLs by Curtailment of Production	29			
		7.3.7	Unreasonable Impacts To Groundwater and Surface Water	31			
	7.4	Additio	nal Management Issues	31			
		7.4.1	Incentivize Conjunctive Use of Groundwater and Surface Water	31			
		7.4.2	Incentivize Aquifer Storage and Recovery	32			
		7.4.3	Promote Water Conservation	33			
8.0	REFE	RENCES.		40			

Questions?

Kriging Application: General Requirements


Normally distributed (or nearly so)

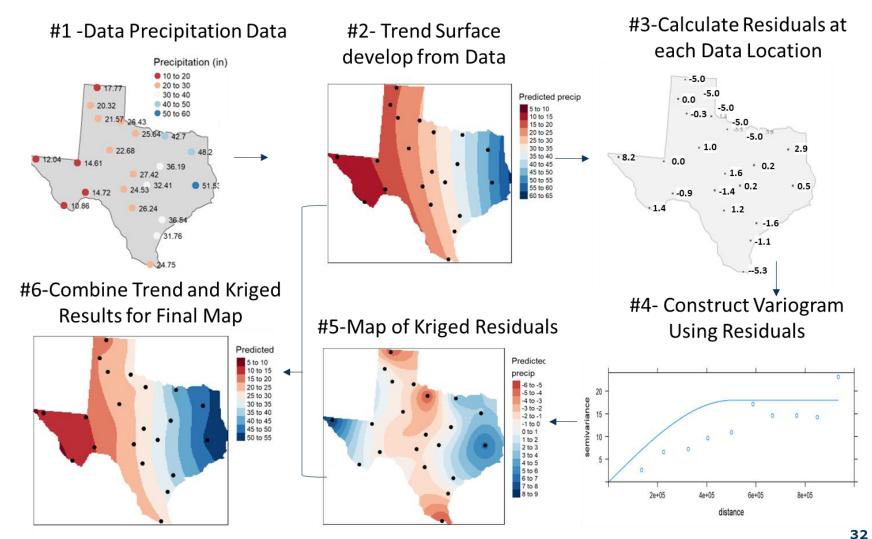
Stationarity (or nearly so)

No trends (or nearly so)

Normal (Bell shaped) distribution can be defined by;

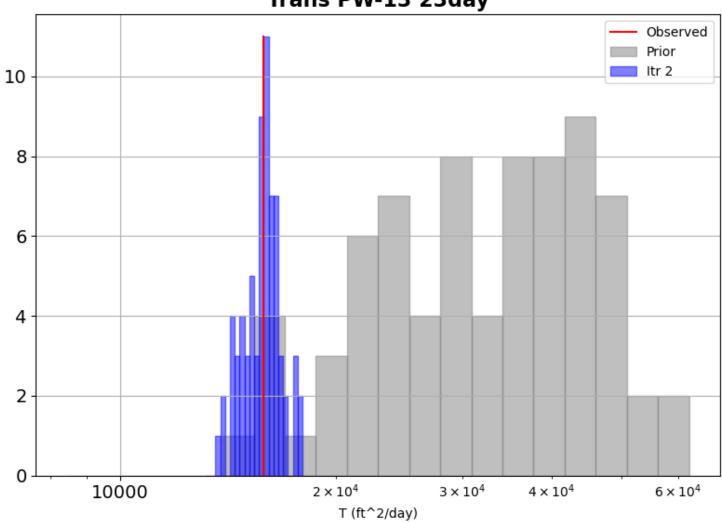
- mean (μ)
- standard deviation (σ)

The statistics/metrics of interested do not change with location. It is a decision and not a hypothesis. Stationarity is a function of scale and dimensions.


- affects how data is pooled & analyzed
- affects how kriging is applied

Spatial trends should be removed from the data prior to developing the variogram. Models used to detrend the data should not over fit the data. Options for detrending data:

- groundwater model
- fitted two-dimensional surfaces


31

Ordinary Kriging – Six-Step Process for Interpolation Rainfall in Texas

https://mgimond.github.io/Spatial/spatial-interpolation.html

Trans PW-13 23day

