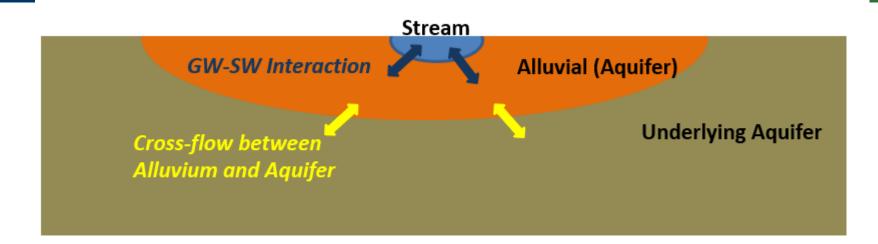
SW-GW INTERACTION AND CROSS-FLOW FOR RUN 13

Presentation to GMA 12


Daniel B. Stephens & Associates Ground Water Consultants, LLC INTERA, Inc

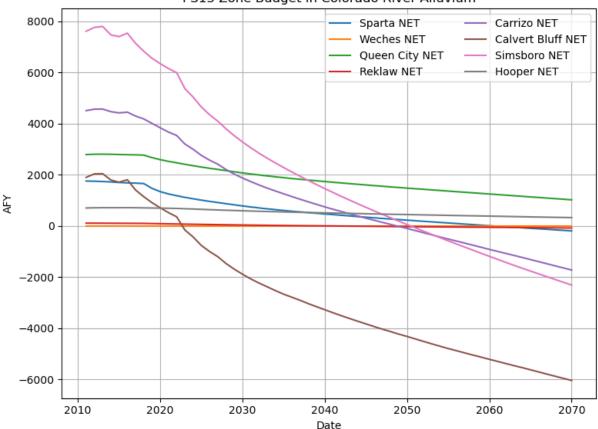
April 21, 2021

Outline for Discussion of Run 13

- GW-SW Interaction
 - Colorado River
 - Brazos River
 - Limitation on model results (Sept, 2020 slides)
- Cross-Flow Between Aquifers
 - Sparta
 - Queen City
 - Carrizo
 - Calvert Bluff
 - Simsboro
 - Hooper

Schematic of Water Budget

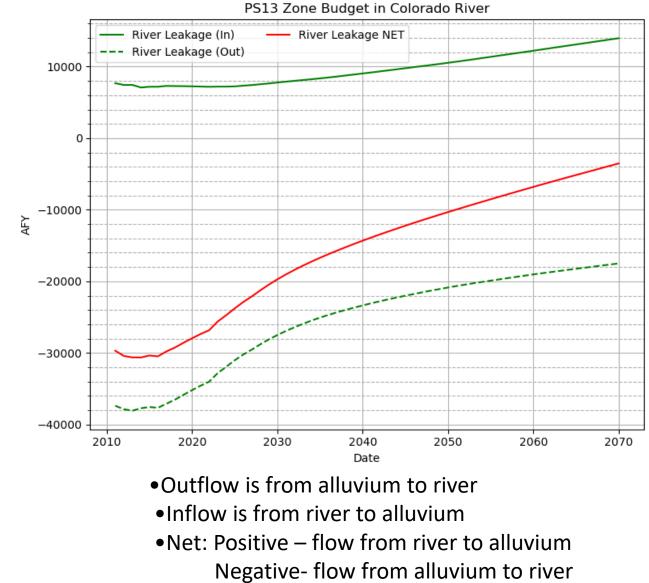
Alluvium Interaction


From a water budget perspective, a negative number is a loss from the alluvium

Negative numbers can be a loss to the river (river is gaining) And, negative numbers can be a lost to an underlying aquifer

Aquifer Cross-Flow: Colorado River Alluvium

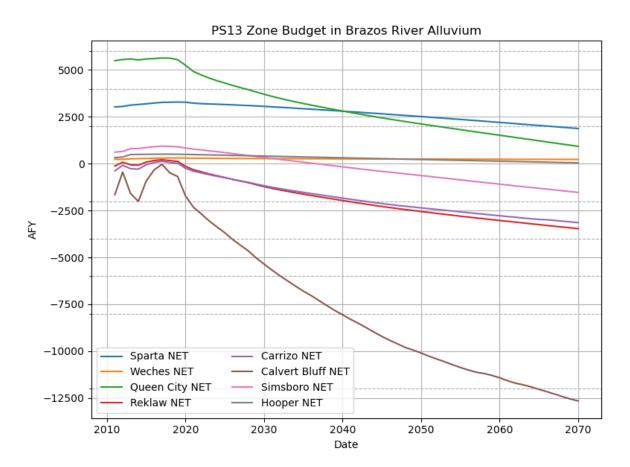
	2011 Aquifer-Alluvium				
Aquifer	Exchange (afy)		Exchange (af		fy)
	Inflow	Outflow	Net		
Sparta	2,240	-485	1,756		
Weches	0	-22	-22		
Queen City	3,390	-600	2,790		
Reklaw	143	-36	107		
Carrizo	6,098	-1,586	4,512		
Calvert Bluff	4,360	-2,461	1,899		
Simsboro	10,631	-3,012	7,620		
Hooper	1,131	-431	700		
Total	27,995	-8,631	19,363		


Aquifer	2070 Aquifer-Alluvium Exchange (afy)		
Aquiter			y) Net
Sparta	895	-1,091	-196
Weches	0	-22	-22
Queen City	1,889	-869	1,020
Reklaw	43	-127	-84
Carrizo	1,302	-3,031	-1,729
Calvert Bluff	706	-6,758	-6,051
Simsboro	4,913	-7,229	-2,316
Hooper	913	-590	323
Total	10,661	-19,716	-9,055

PS13 Zone Budget in Colorado River Alluvium

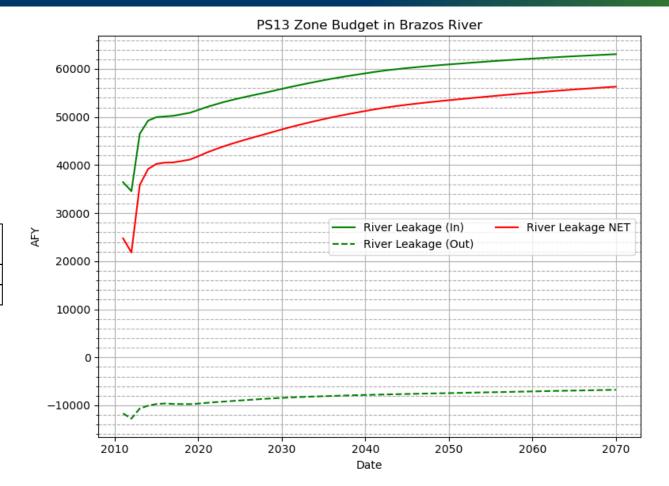
- •Outflow is from alluvium to aquifer
- •Inflow is from aquifer to alluvium
- •Net: Positive flow from aquifer to alluvium Negative- flow from alluvium to aquifer

SW-GW Interaction: Colorado River Alluvium


2011 River-Alluvium Exchange			
(afy)			
Inflow	Outflow	Net	
7,688	-37,376	-29,688	

2070 River-Alluvium Exchange (afy)			
Inflow	Outflow	Net	
13,972	-17,494	-3,522	

Aquifer Cross Flow: Brazos River Alluvium


	2011 Aquifer-Alluvium		
Aquifer	Exchange (afy)		
	Inflow	Outflow	Net
Sparta	3,415	-382	3,033
Weches	234	0	234
Queen City	5,717	-221	5,496
Reklaw	192	-318	-126
Carrizo	274	-656	-382
Calvert Bluff	2,345	-4,001	-1,656
Simsboro	984	-367	617
Hooper	351	-25	326
Total	13,514	-5,970	7,544

Aquifer	2070 Aquifer-Alluvium Exchange (afy)			•	
	Inflow	Outflow	Net		
Sparta	2,761	-883	1,878		
Weches	230	-3	228		
Queen City	3,013	-2,086	927		
Reklaw	15	-3,478	-3,462		
Carrizo	13	-3,155	-3,142		
Calvert Bluff	151	-12,806	-12,655		
Simsboro	318	-1,849	-1,531		
Hooper	310	-264	46		
Total	6,813	-24,523	-17,711		

- Outflow is from alluvium to aquifer
- •Inflow is from aquifer to alluvium
- •Net: Positive flow from aquifer to alluvium Negative- flow from alluvium to aquifer

SW-GW Interaction: Colorado River Alluvium

- •Outflow is from alluvium to river
- •Inflow is from river to alluvium
- •Net: Positive flow from river to alluvium

Negative- flow from alluvium to river

 36,441
 -11,674
 24,767

 2070 River-Alluvium Exchange

Net

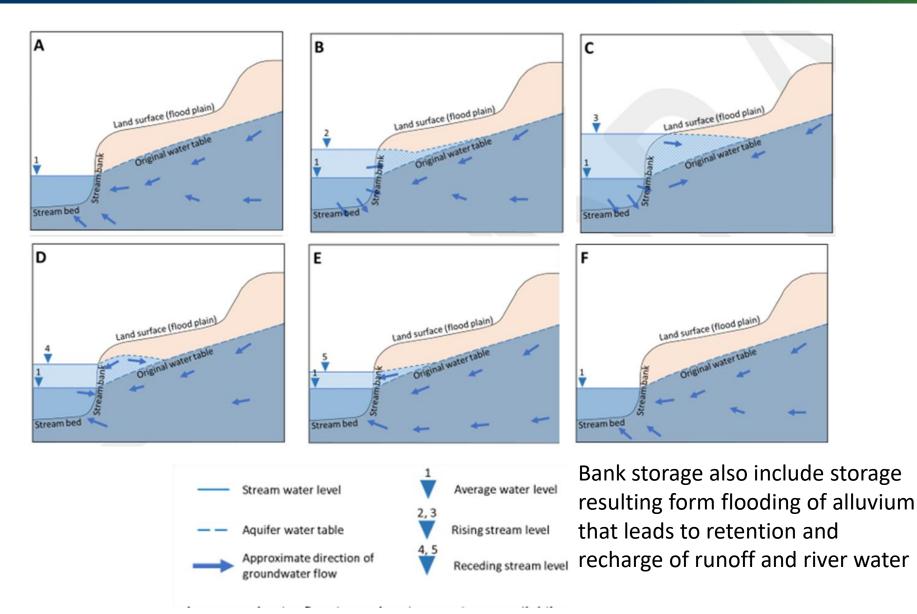
(afy)		
Inflow	Outflow	Net
63,070	-6,758	56,312

2011 River-Alluvium Exchange

(afy)

Outflow

Inflow


Application of the BRAA and SP/QC/CW GAMs for Simulating GW-SW Exchange

- Strengths
 - GAMs include shallow ground flows zones and inclusion of alluvium underlying the stream bed
 - GAMs have grid refinement near streams to improve representation of river cells and wells
- Short-comings
 - Input data and calibration targets are based on time intervals of 1year
 - Algorithms and time intervals do not adequately capture temporal dynamics associated with changing river elevation, and overbank/bank storage associated with flood events

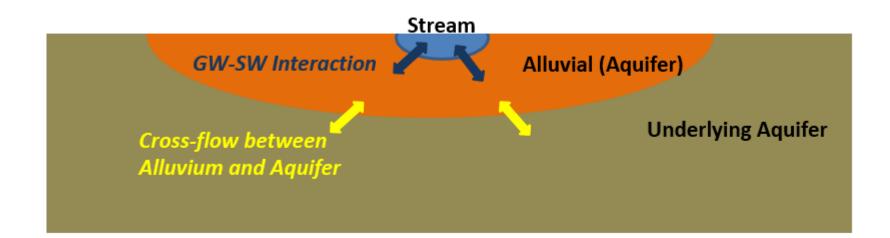
Assessment for Establishing DFCs for GW-SW Exchange

- Given careful application and analysis, GAMs are suitable for developing some qualitative relationship between pumping and GW-SW exchange
- GAMs are less reliable for prediction of GW-SW exchange for river tributaries than for main river reach

Schematic of Bank (alluvium) Storage and Bank (alluvium) Flow

Summary of SW-GW Exchange Simulated from 2010-2070 for Stream-Alluvium Interactions

- GAMs have been developed to include shallow flow system that includes alluvium for Colorado Rivers and Brazos Rivers
- GAMs have not yet been updated to accurately simulate the important transient and dynamic nature of GW-SW exchange
- Insufficient field data exists to accurately provide a framework for interpreting GAM results and assessing importance of bank storage
- GAMs results indicate that large increases in pumping will reduce the amount of groundwater that flows from the alluvium to the rivers

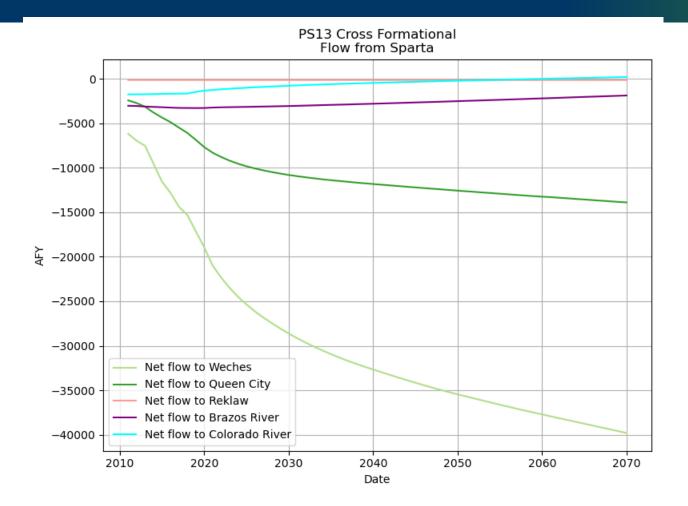

Potential Impact of Bank Flow on Baseflow

- As discussed by Freeze and Cherry (1979), bank storage effects and bank flows can complicate the process of defining and determining baseflow.
- Bank storage refers to the variable amount of water stored temporarily in the stream banks during rising flood stage (Todd, 1955).
- Bank flow is the release of bank storage back to the stream that occurs following the high rivers stage that occurs during a flood.
- This study by Rhodes and others (2017) involved the analysis of water levels and water quality in the Brazos River and groundwater in Burleson County. Over a four-month post-flood event period, they estimated that 96% of the groundwater that flowed to the Brazos River from the aquifer was from bank storage.
- Despite being potentially important to characterizing SW-GW interactions, bank flow and bank storage is not recognized in TCEQ rules and is not computable using WAMs and GAMs.

SUMMARY OF KEY ENVIRONMENTAL ISSUES

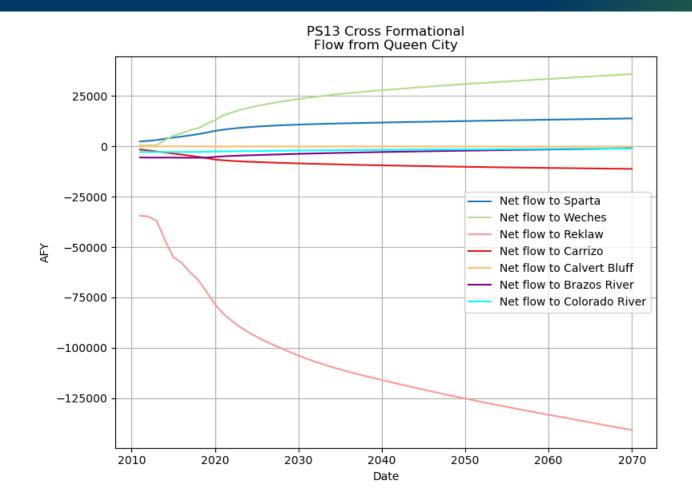
- TCEQ Environmental Instream Flow program is set up to protect the health of the Colorado and Brazos Rivers. GAMS have not been demonstrated as suitable for quantitative GW/SW analysis
- River authorities are currently managing in-stream flows in Colorado and Brazos rivers
- The evaluation river gage hydrographs by the TCEQ Instream Flow program does not quantify GW flow
- Groundwater flow into streams can be an important contributor for helping river authorities maintain critical or subsistence flows

Schematic of Water Budget

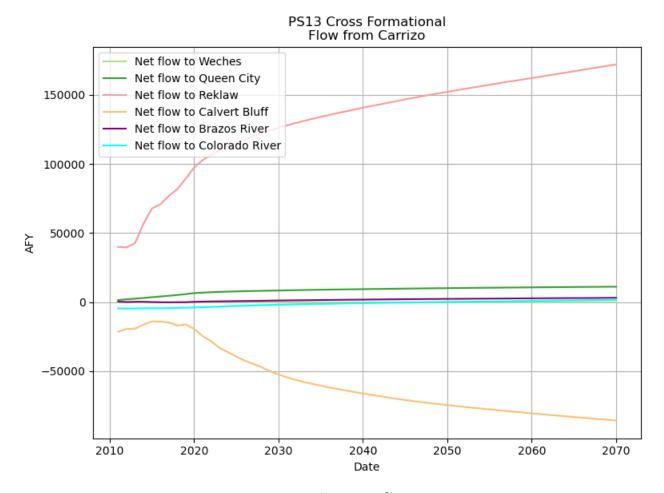


GW-SW Interaction

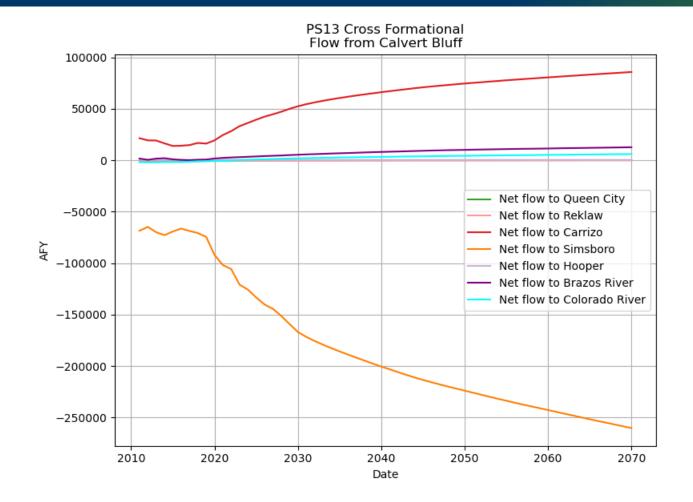
Flow from Aquifer to Stream is Negative Flow From Stream to Aquifer is Positive


Positive Net Flow Stream Flow = Losing Stream Negative Net Flow Stream Flow = Gaining Stream

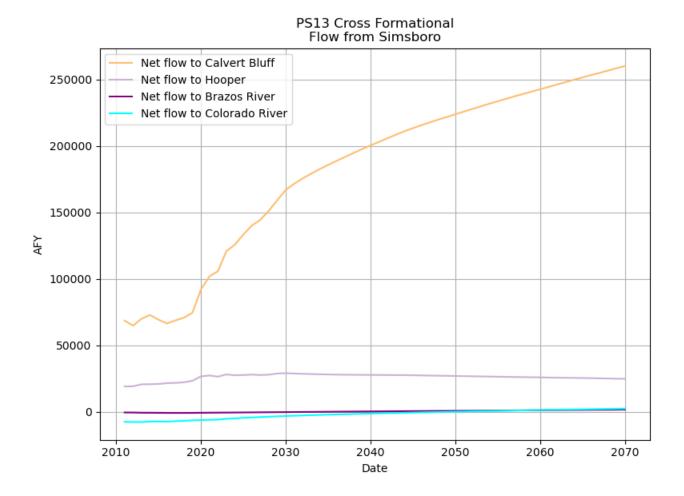
Cross-Flow Between Aquifer: Sparta


Positive values – flow into Sparta Negative value - flow out of Sparta

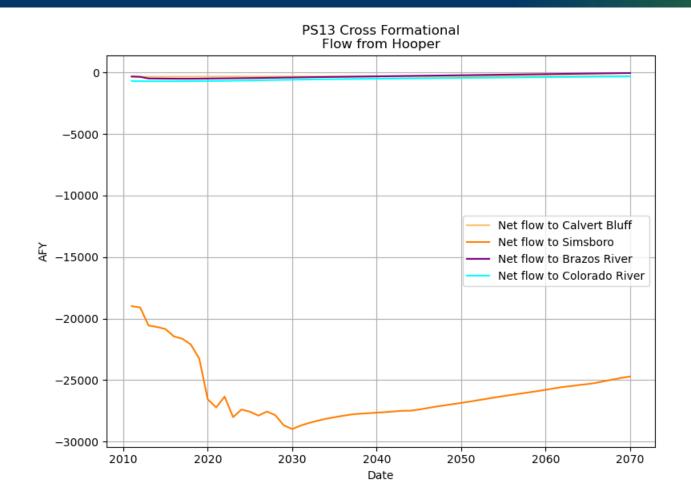
Cross-Flow Between Aquifer: Queen City


Positive values – flow into Queen City Negative value - flow out of Queen City

Cross-Flow Between Aquifer: Carrizo


Positive values – flow into Carrizo Negative value - flow out of Carrizo

Cross-Flow Between Aquifer: Calvert Bluff


Positive values – flow into Calvert Bluff Negative value - flow out of Calvert Bluff

Cross-Flow Between Aquifer: Simsboro

Positive values – flow into Simsboro Negative value - flow out of Simsboro

Cross-Flow Between Aquifer: Hooper

Positive values – flow into Hooper Negative value - flow out of Hooper

Questions?