THE WILCOX PORTION OF THE CARRIZO-WILCOX AQUIFER

IN FAYETTE COUNTY

I. INTRODUCTION

The Texas Water Development Board, in its May 2020 document, Explanatory Report for Submittal of Desired Future Conditions to the Texas Water Development Board, offers the following guidance regarding documentation for aquifers that are to be classified not relevant for purposes of joint planning:

Districts in a groundwater management area may, as part of the process for adopting and submitting desired future conditions, propose classification of a portion or portions of a relevant aquifer as non-relevant (31 Texas Administrative Code 356.31 (b)). This proposed classification of an aquifer may be made if the districts determine that aquifer characteristics, groundwater demands, and current groundwater uses do not warrant adoption of a desired future condition. The districts must submit to the TWDB the following documentation for the portion of the aquifer proposed to be classified as non-relevant:

- 1. A description, location, and/or map of the aquifer or portion of the aquifer;
- 2. A summary of aquifer characteristics, groundwater demands, and current groundwater uses, including the total estimated recoverable storage as provided by the TWDB, that support the conclusion that desired future conditions in adjacent or hydraulically connected relevant aquifer(s) will not be affected; and
- *3.* An explanation of why the aquifer or portion of the aquifer is nonrelevant for joint planning purposes.

This technical memorandum provides the required documentation to classify the Wilcox portion of the Carrizo-Wilcox Aquifer in Fayette County as not relevant for purposes of joint planning.

II. AQUIFER DESCRIPTION AND LOCATION

As described in George and others (2011):

The Carrizo-Wilcox Aquifer is a major aquifer extending from the Louisiana border to the border of Mexico in a wide band adjacent to and northwest of the Gulf Coast Aquifer. It consists of the Wilcox Group and the overlying Carrizo Formation of the Claiborne Group. The aquifer is primarily composed of sand locally interbedded with gravel, silt, clay, and lignite. Although the Carrizo-Wilcox Aquifer reaches 3,000 feet in thickness, the freshwater saturated thickness of the sands averages 670 feet. The groundwater, although hard, is generally fresh and typically contains less than 500 milligrams per liter of total dissolved solids in the outcrop, whereas softer groundwater with total dissolved solids of more than 1,000 milligrams per liter occurs in the subsurface. High iron and manganese content in excess of secondary drinking water standards is characteristic of the deeper subsurface portions of the aquifer. Parts of the aquifer in the Winter Garden area are slightly to moderately saline, with total dissolved solids ranging from 1,000 to 7,000 milligrams per liter. Irrigation pumping accounts for slightly more than half the water pumped, and pumping for municipal supply accounts for another 40 percent. Water levels have declined in the Winter Garden area because of irrigation pumping and in the northeastern part of the aquifer because of municipal pumping. The regional water planning groups, in their 2006 Regional Water Plans, recommended several water management strategies that use the Carrizo-Wilcox Aquifer, including developing new wells and well fields, withdrawing additional water from existing wells, desalinating brackish water, using surface water and groundwater conjunctively, reallocating supplies, and

transporting water over long distances.

Figure 1 (taken from Wade and others, 2014) shows the extent of the Carrizo-Wilcox Aquifer in GMA 12.

Figure 1. Location of Carrizo-Wilcox Aquifer in GMA 12

III. AQUIFER CHARACTERISTICS

The Wilcox portion of the Carrizo-Wilcox Aquifer occurs below the Carrizo Aquifer. In Fayette County, the depth of wells producing from the Carrizo Aquifer ranges from 1,700 to 3,200 feet. The Wilcox units (including the Calvert Bluff, Simsboro, and Hooper) occur below the Carrizo, and therefore wells producing from these units would be at least 2,000 feet deep. Water quality in these Wilcox units is estimated to be brackish to saline. There are no known wells in the Wilcox units within Fayette County, and therefore the aquifer characteristics within the county are unknown.

IV. GROUNDWATER DEMANDS AND CURRENT GROUNDWATER USES

The Texas Water Development Board pumping database lists limited pumping from the Carrizo-Wilcox Aquifer in Fayette County that ranged from 10 to 390 acre-feet/year between 2007 and 2018. However, this use is all from the Carrizo portion of the Carrizo-Wilcox Aquifer, as there are no known wells producing from the Wilcox units within Fayette County.

V. TOTAL ESTIMATED RECOVERABLE STORAGE

Wade and others (2014) developed total estimated recoverable storage for the Carrizo-Wilcox Aquifer in GMA 12 as follows:

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Fayette	95,000,000	23,750,000	71,250,000
Total	95,000,000	23,750,000	71,250,000

Total storage is given in the first column. Lower percentages of storage are given in the next two columns.

VI. EXPLANATION OF NON-RELEVANCE

Due to its extreme depth, poor water quality, lack of use and zero anticipated use in the future, the Wilcox portion of the Carrizo-Wilcox Aquifer is classified as not relevant for purposes of joint planning in Fayette County in Groundwater Management Area 12.

VII. REFERENCES

George, P.G., Mace, R.E., and Petrossian, R., 2011. Aquifers of Texas. Texas Water Development Board Report 380, July 2011, 182p.

Wade, S. and Shi, J., 2014. GAM Task 13-035 Version 2: Total Estimated Recoverable Storage for Aquifers in Groundwater Management Area 12. Texas Water Development Board, Groundwater Resources Division, May 16, 2014, 43p.