
Presentation to DFC Committee: Evaluation of DFCs and PDLs and Demonstration of Compliance

Agenda

- Compliance Assessment: Protective Drawdown Limits
 - Monitored results
 - Modeled Results
- Compliance Assessment: Desired Future Conditions
 - Monitored results
 - Modeled results
- Review of POSGCD Rules
 - 16.4 Actions Based on Monitoring Results
 - 16.6 Adjusting Maximum Production Permitted
 - 16.7 Permit Limitations and Reductions

Agenda (con't)

- Sensitivity of PDLs for PS-7
 - Depth of Shallow Zone
 - Pumping (Vista Ridge, ALCOA, LPGCD)

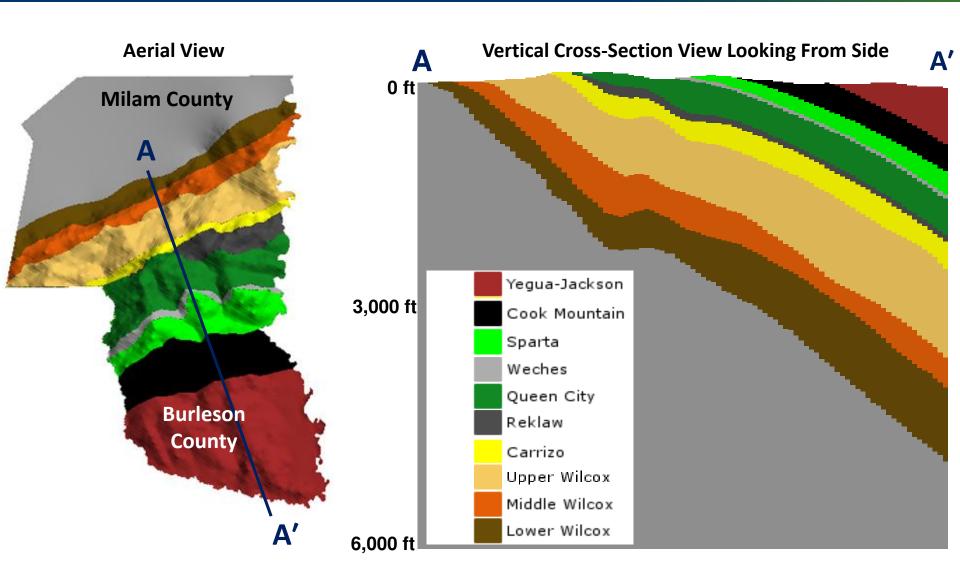
- Sensitivity of DFCs for PS-7
 - Pumping (Vista Ridge, ALCOA, LPGCD)

 Sensitivity of PDLs and DFCs for PS-7 under Curtailment

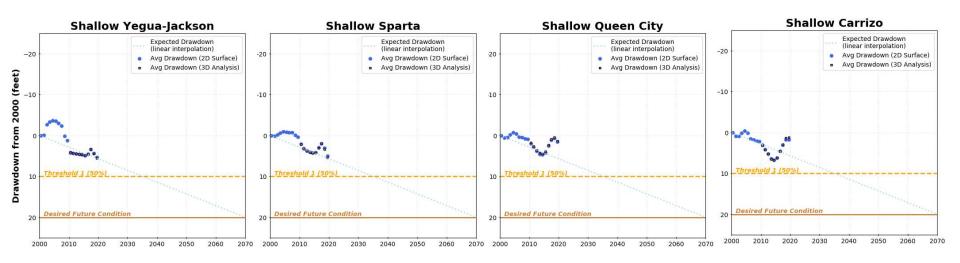
Agenda (con't)

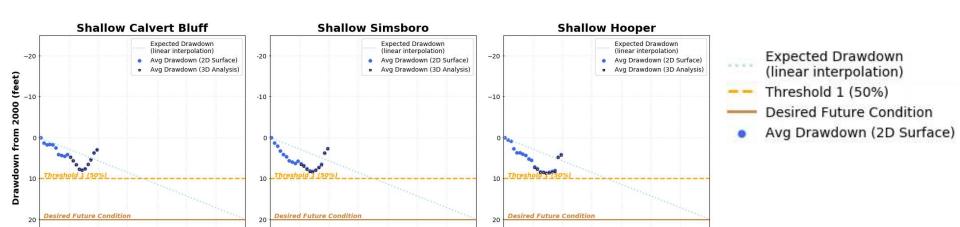
- Monitoring Well Network
 - Wells used to demonstrate PDL and DFC compliance
 - Evaluation of well coverage
 - Next Steps
- Monitoring Well Program
 - Protocols used to interpolate monitored water levels to check compliance of PDLs and DFCs
 - Evaluation of interpolation techniques
 - Next Steps

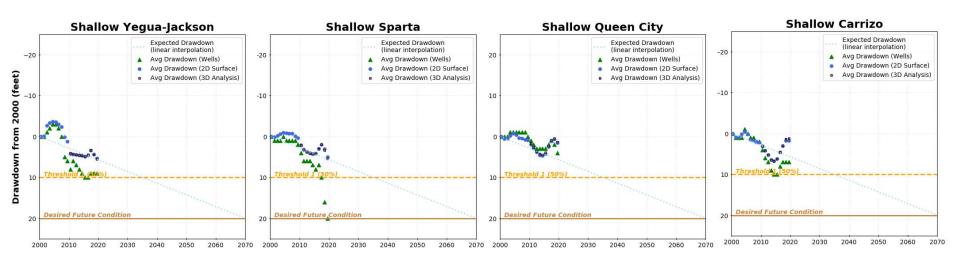
Agenda (con't)

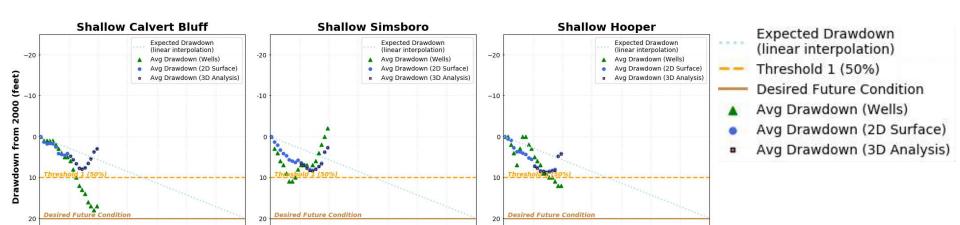

- Evaluation of "best science" criteria for application of Groundwater Modeling to simulated DFCs and PDLs
 - Groundwater model
 - Pumping Rates
 - Measured water levels
 - Evaluation of "best science" criteria
- Reports
 - GWAP Annual Needs Assessment
 - Compliance Report (PDLs and DFCs)
 - Proposed Management Strategies

Protective Drawdown Limits (PDLs)




Sparta/Queen City/Carrizo Wilcox/Yegua-Jackson




Compliance with POSGCD Shallow PDLs

Compliance with POSGCD Shallow PDLs

2070

2070 2000

Compliance with POSGCD PDLs Based on Monitored Water Levels

Shallow Management Zone	PDL	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Yegua Jackson	20	0.0	-2.7	-3.3	-3.6	-3.6	-3.0	-2.3	0.1	1.2	4.3	4.3 (4.3)	4.5 (4.4)	4.6 (4.6)	4.7 (4.6)	4.9 (4.9)	4.6 (4.5)	3.4 (3.4)	4.4 (4.4)	5.3 (5.5)
Sparta	20	0.2	-0.2	-0.6	-0.9	-0.9	-0.8	-0.7	0.0	0.4	2.1	3.2 (3.3)	3.7 (3.8)	4.1 (4.1)	4.2 (4.3)	4.1 (4.3)	2.9 (3.1)	1.9 (2)	3.1 (3.4)	5 (5.5)
Queen City	20	0.5	0.4	-0.2	-0.7	-0.4	0.4	0.4	0.8	0.9	2.0	2.9 (2.7)	3.8 (3.6)	4.6 (4.3)	4.7 (4.5)	4.2 (4)	2.5 (2.3)	1.1 (0.9)	0.6 (0.4)	1.6 (1.4)
Carrizo	20	0.9	0.9	0.1	-0.4	0.2	1.6	1.8	2.1	2.1	3.0	4.2 (4.3)	5.2 (5.3)	6.4 (6.5)	6.7 (6.8)	6.2 (6.2)	4.6 (4.5)	3 (2.9)	1.7 (1.4)	1.7 (1.2)
Calvert Bluff (Upper Wilcox)	20	1.4	1.8	1.7	1.8	2.6	4.1	4.4	4.6	4.2	4.8	5.7 (5.7)	6.6 (6.6)	7.7 (7.8)	8 (8)	7.7 (7.7)	6.6 (6.7)	5.4 (5.6)	3.7 (3.8)	3 (3)
Simsboro (Middle Wilcox)	20	1.3	2.1	3.3	4.2	4.7	5.7	5.9	6.3	5.8	6.5	6.9 (7.1)	7.6 (7.8)	8.2 (8.3)	8.3 (8.4)	7.9 (8.1)	7.2 (7.4)	6.5 (6.8)	3.9 (3.8)	2.8 (2.7)
Hooper (Lower Wilcox)	20	0.6	0.9	2.8	3.7	3.7	4.0	4.3	5.3	5.6	7.2	7.6 (7.9)	8.4 (8.6)	8.4 (8.6)	8.7 (8.8)	8.5 (8.7)	8.2 (8.4)	8.1 (8.3)	4.7 (5)	4.1 (4.3)

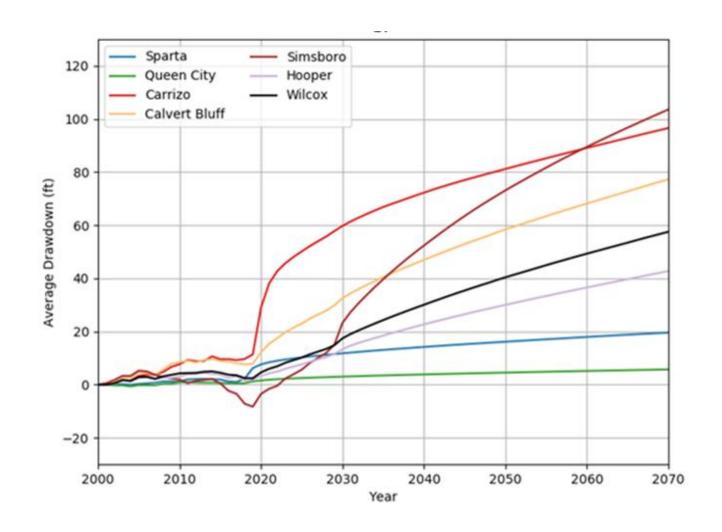
Rule 16.4 Thresholds

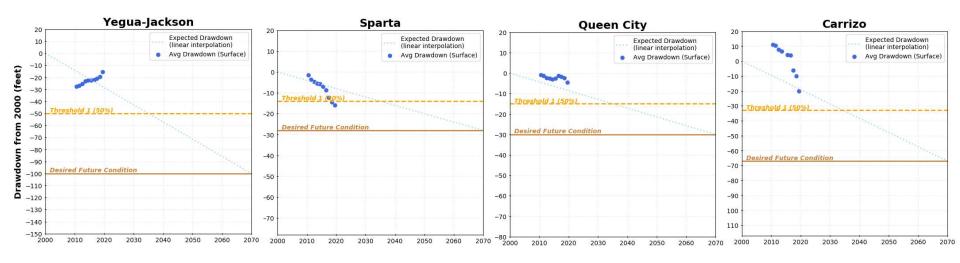
Method

Threshold 1 = 10 ft

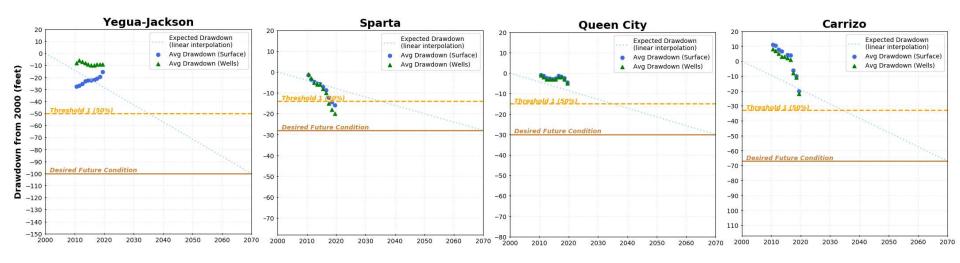
Threshold 2 = 12 ft

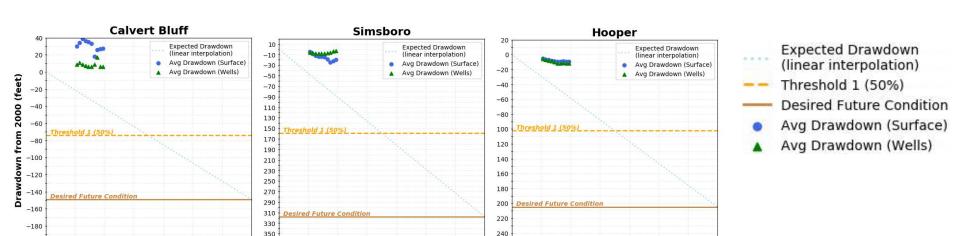
Threshold 3 = 15 ft


2D calculation (3D calculation)


Largest Drawdown

Simulated Average Drawdown for Aquifer Depth of 400 feet (simulated PDL)




Desired Future Conditions

2070 2000

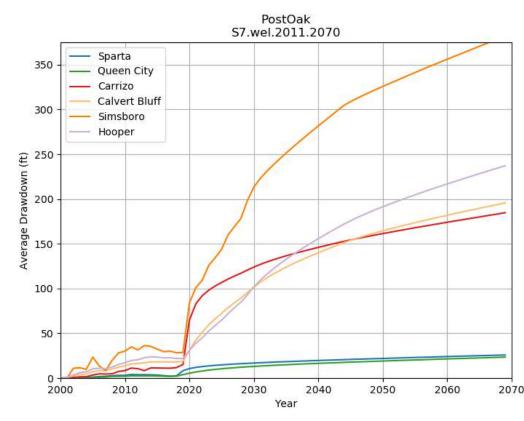
Compliance with POSGCD DFCs based on Monitored Water Levels

Management Zone	DFC	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Yegua Jackson	100	27.5	26.8	25.4	23.0	22.3	22.3	22.2	21.0	19.6	15.6
Sparta	28	1.4	3.6	4.6	5.4	5.6	7.0	8.6	12.3	14.5	15.9
Queen City	30	0.9	1.4	2.4	2.7	2.9	2.6	1.3	1.6	2.4	4.6
Carrizo	67	-11.1	-10.4	-7.9	-6.6	1	-4.3	-3.8	6.1	9.9	20.0
Calvert Bluff (Upper Wilcox)	149	-29.9	-34.2	-39.0	-36.4	-35.4	-33.3	-18.0	-25.8	-27.0	-27.2
Simsboro (Middle Wilcox)	318	5.0	8.9	12.2	13.7	13.8	14.9	19.0	24.7	22.5	19.5
Hooper (Lower Wilcox)	205	5.4	6.2	6.9	7.9	8.7	9.5	9.5	8.9	9.2	9.2

Threshold 1 = 50% of DFC

Threshold 2 = 60% of DFC

Threshold 3 = 75% of DFC



Simulated DFC for PS-7

PS-7 Simulation

Comparison of PS-7 Simulated DFCs and POSGCD DFCs*

	Current DFC (feet)	Current MAG in 2070	S-7 Drawdown from 2010 to 2070 (feet)	S-7 Pumpage in 2070 (acre-feet)
Sparta	28	6,735	17	1,983
Queen City	30	504	19	1,045
Carrizo	67	7,058	177	18,205
Calvert Bluff	149	1,036	183	4,761
Simsboro	318	48,503	355	85,855
Hooper	205	4,422	222	3,126

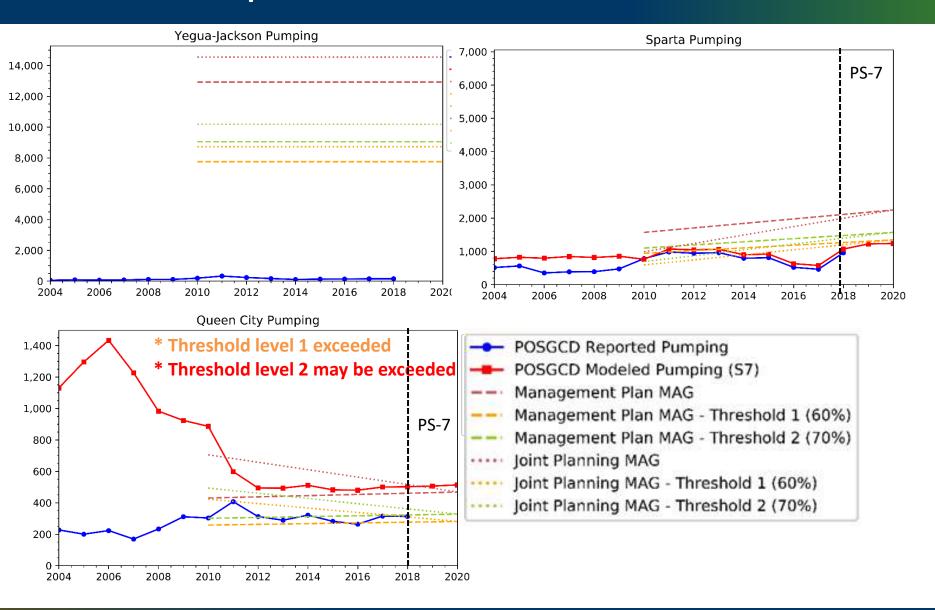
By 2070, DFCs are exceeded for Carrizo, Calvert Bluff, Simsboro, and Hooper Aquifers

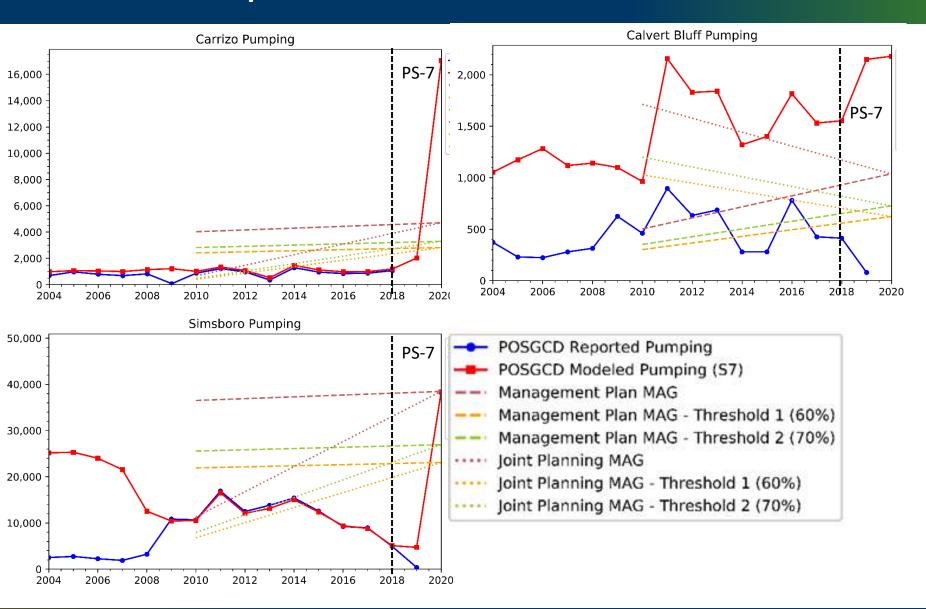
^{*} From GMA 12 Sept 2019 presentation (note: different time periods for PS-7 and POSGCD DFCs)

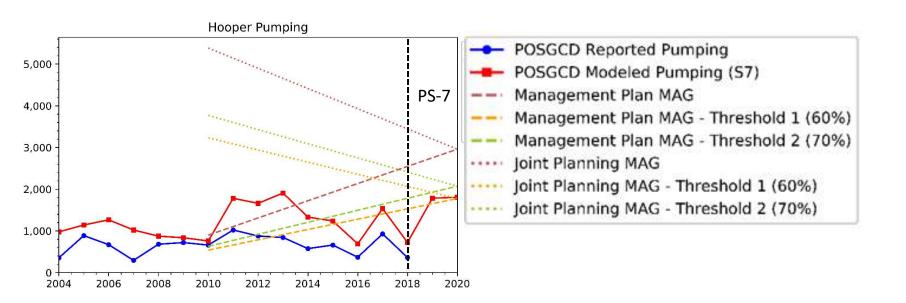
Rule 16.4 Actions Based on Monitoring Results

POSGCD Rules: Section 16 Thresholds

Criteria	Threshold Level							
Criteria	1	2	3					
Total annual production	> 60% of MAG in Management Plan	>70% of MAG in Management Plan	NA					
Average drawdown in Section 7 of	> 50% of PDLs		> 75% of PDLs					
Management Plan	> 50% of DFCs	> 60% of DFCs	> 75% of DFCs					
Average drawdown in Shallow Management Zone	> 50% of PDLs	>60% of PDLs	NA					
Projected Average drawdowns calculated	> PDLs in 15 years	NA	NA					
with a District	> DFC in 15 years	NA	NA					


Threshold 1	Perform studies to improve quantification of pumping effects, characterization of aquifer, and prediction of changes in future water levels						
Threshold 2	Re-evaluate the Management Plan and rules regarding management zones, collection and analysis of monitoring data, and DFCs.						
	1. Conduct public hearing to discuss aquifer conditions. Develop a Response Action Work Plan to achieve DFCs and PDLs.						
Threshold 3	2. If drawdowns are exceeded, the maximum water production permitted per acre for the Management Zone and the water authorized to be produced under any permit issued by the District for that zone will be reduced.						


POSGCD Rules: Section 16 Thresholds


Threshold	Description	Aquifer
Level 1	> 60% of MAG in Management Plan	Queen City
Level 1	> 50% of DFCs	Sparta
Level 1	> PDLs in 15 years	Carrizo
Level 1	> PDLs in 15 years	Calvert Bluff
Level 1	> PDLs in 15 years	Simboro
Level 2*	> 70% of MAG in Management Plan	Queen City

^{*} based on anticipated 2020 pumping

Threshold 1	Perform studies to improve quantification of pumping effects, characterization of aquifer, and prediction of changes in future water levels
Threshold 2	Re-evaluate the Management Plan and rules regarding management zones, collection and analysis of monitoring data, and DFCs.
	1. Conduct public hearing to discuss aquifer conditions. Develop a Response Action Work Plan to achieve DFCs and PDLs.
Threshold 3	2. If drawdowns are exceeded, the maximum water production permitted per acre for the Management Zone and the water authorized to be produced under any permit issued by the District for that zone will be reduced.

Compliance with POSGCD DFCs Based on Monitoring Results

Management Zone	DFC	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Yegua Jackson	100	27.5	26.8	25.4	23.0	22.3	22.3	22.2	21.0	19.6	15.6
Sparta	28	1.4	3.6	4.6	5.4	5.6	7.0	8.6	12.3	14.5	15.9
Queen City	30	0.9	1.4	2.4	2.7	2.9	2.6	1.3	1.6	2.4	4.6
Carrizo	67	-11.1	-10.4	-7.9	-6.6		-4.3	-3.8	6.1	9.9	20.0
Calvert Bluff (Upper Wilcox)	149	-29.9	-34.2	-39.0	-36.4	-35.4	-33.3	-18.0	-25.8	-27.0	-27.2
Simsboro (Middle Wilcox)	318	5.0	8.9	12.2	13.7	13.8	14.9	19.0	24.7	22.5	19.5
Hooper (Lower Wilcox)	205	5.4	6.2	6.9	7.9	8.7	9.5	9.5	8.9	9.2	9.2

Threshold 1 = 50% of DFC

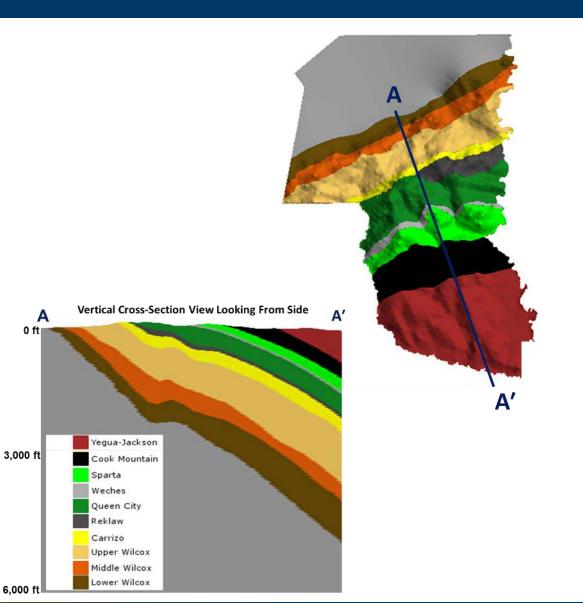
Threshold 2 = 60% of DFC

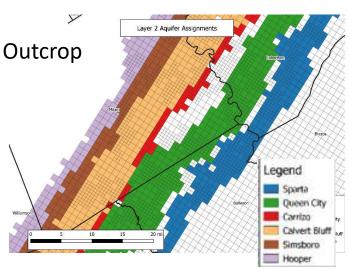
Threshold 3 = 75% of DFC

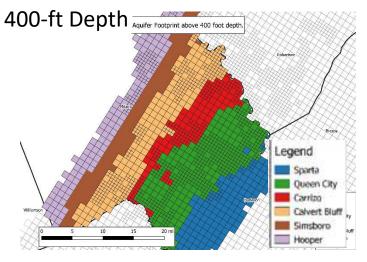
Summary

2020 Monitoring Event

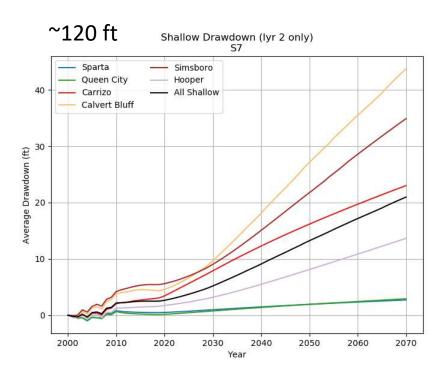
- Data collection will be completed by April 30th
- Data analysis will be completed by May 15th

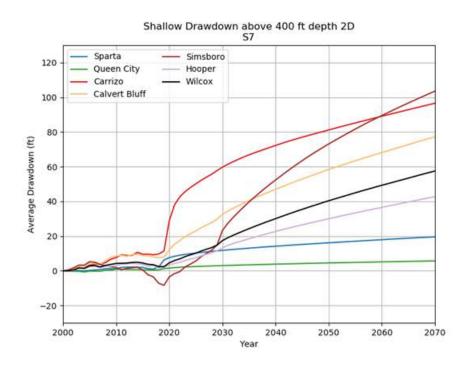

Rule 16. 4


- Level 1 Action: Perform studies to improve quantification of pumping effects,
 characterization of aquifer, and prediction of changes in future water levels
- Level 2 Action: Re-evaluate the Management Plan and rules regarding management zones, collection and analysis of monitoring data, and DFCs.


Sensitivity of PDLs for PS-7 Pumping

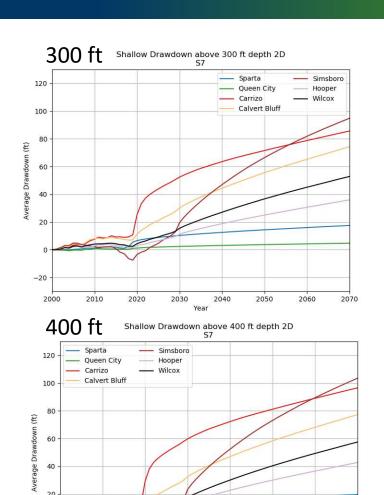
3D Analysis For PDLs



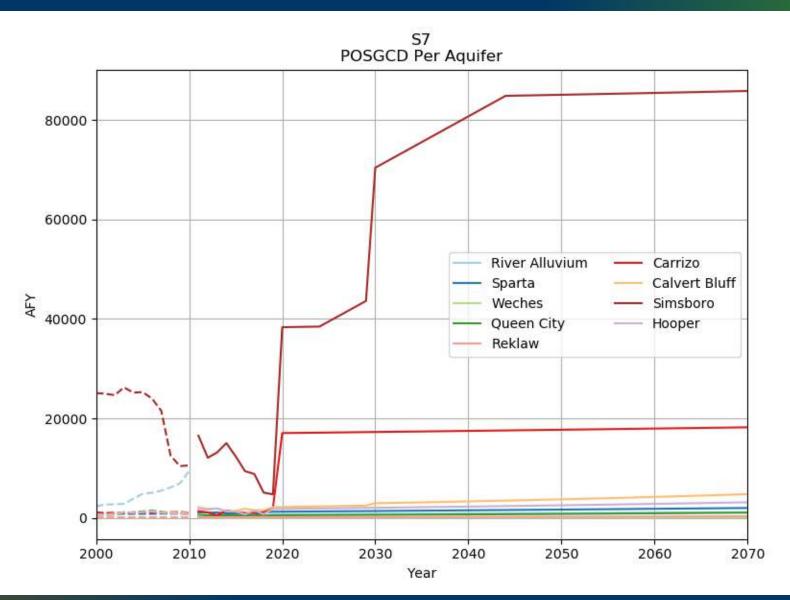


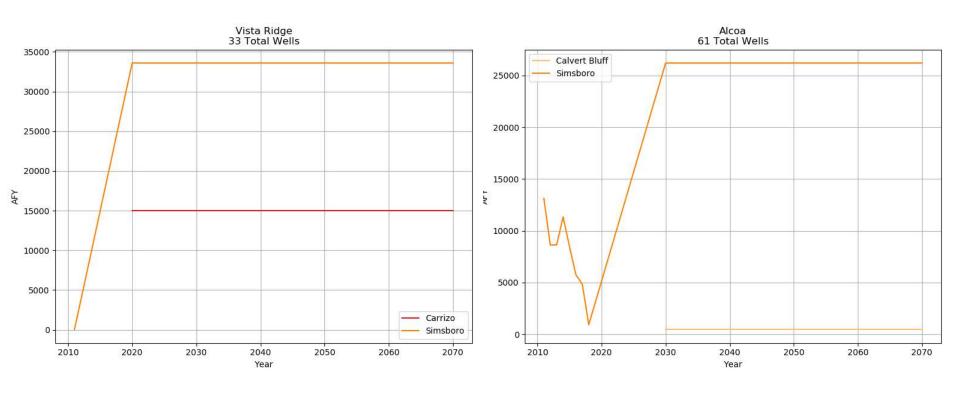
Sensitivity of Calculated PDF to Depth using Results From Groundwater Model

A PDL (for Calvert Bluff) is not exceeded until after 2040


A PDL (Carrizo) is exceeded after 2020

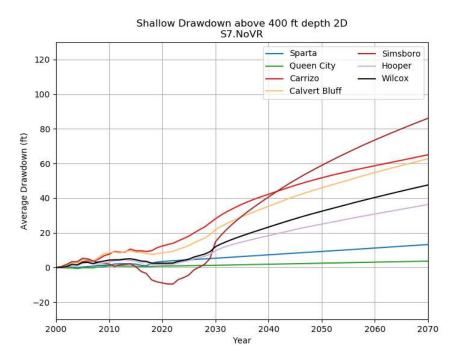
Sensitivity to Depth of Shallow Zone



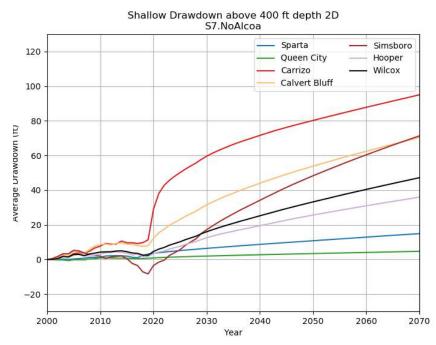

-20

POSGCD Pumping for PS-7

PS – 7 Pumping for Simsboro & Carrizo*



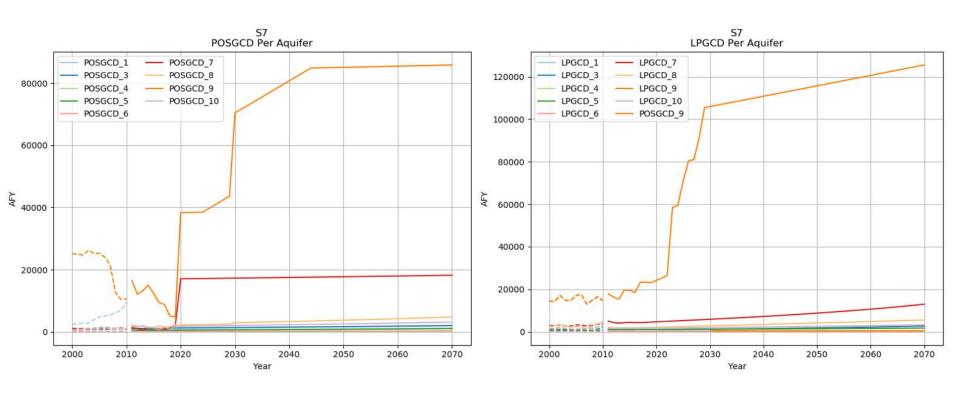
* Carrizo pumping is too high in 2020


Simulated PDLs for a Depth of 400 feet for Shallow Zone

No Vista Ridge Pumping in Simsboro & Carrizo after 2020

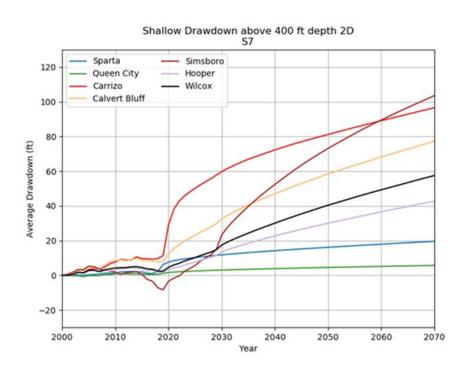
PDL exceeded by 2025 and 2030 for Carrizo and Simsboro, respectively

Alcoa no increase in Simsboro pumping after 2020

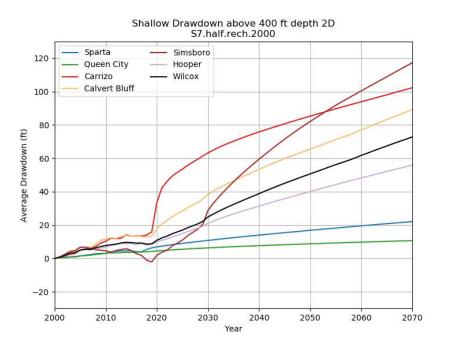


PDL exceeded by 2021 and 2025 for Carrizo and Simsboro, respectively

* 400-ft depth



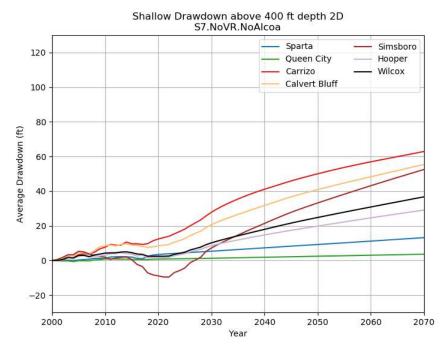
PS – 7 Pumping

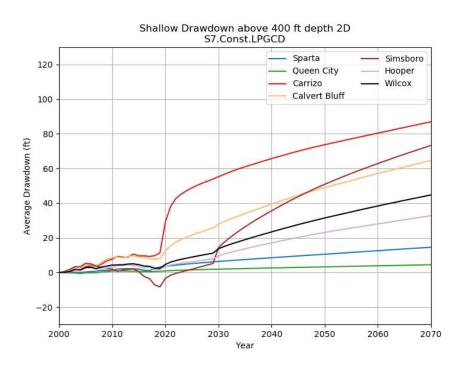


Sensitivity of Simulated PDLs* to changes 50% Reduction in Recharge

PS-7

50% Reduction in Recharge Across all Aquifers in GMA 12 from 2000 to 2070 for PS-7


* 400-ft depth


Sensitivity of Simulated PDLs* to changes in POSGCD and LPGCD Pumping

No Vista Ridge Pumping After 2020 & Alcoa Pumping is constant after 2020

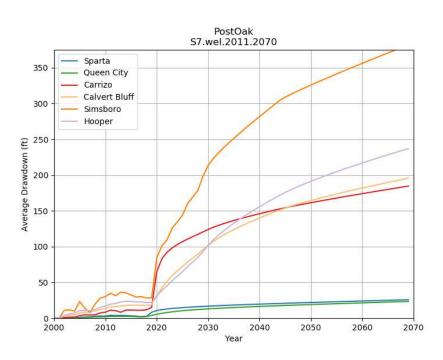
LPGCD pumping is constant (~22,000 AFY) after 2020

PDL exceeded by 2025 and 2030 for Carrizo and Simsboro, respectively

PDL exceeded by 2021 and 2025 for Carrizo and Simsboro, respectively

* 400-ft depth

Sensitivity of DFCs for PS-7 Pumping

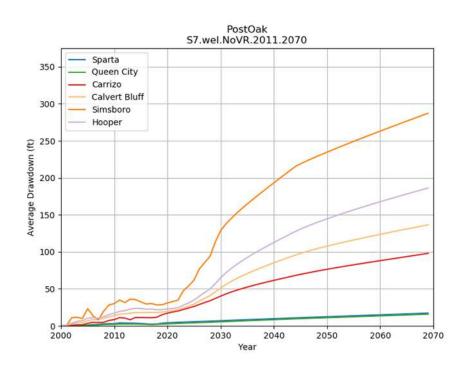


Simulated DFC for PS-7

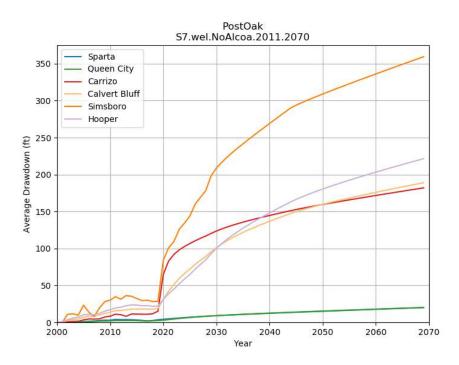
Comparison of PS-7 Simulated DFCs and POSGCD DFCs*

	Current DFC (feet)	Current MAG in 2070	S-7 Drawdown from 2010 to 2070 (feet)	S-7 Pumpage in 2070 (acre-feet)
Sparta	28	6,735	17	1,983
Queen City	30	504	19	1,045
Carrizo	67	7,058	177	18,205
Calvert Bluff	149	1,036	183	4,761
Simsboro	318	48,503	355	85,855
Hooper	205	4,422	222	3,126

PS-7 Simulation



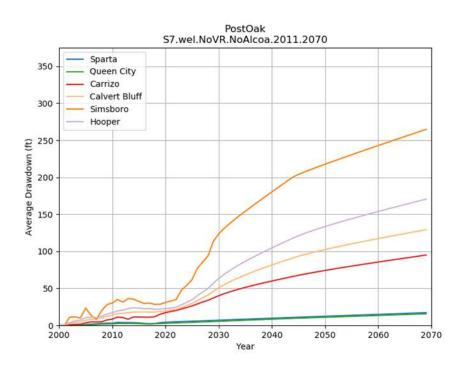
^{*} From GMA 12 Sept 2019 presentation (note: different time periods for PS-7 and POSGCD DFCs)


Sensitivity of Simulated DFCs to Changes in Pumping

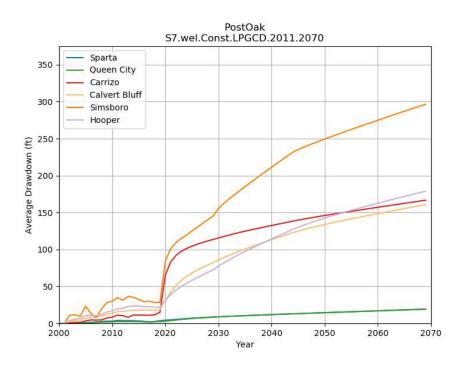
No Vista Ridge Pumping After 2020 & Alcoa Pumping is constant after 2020

DFCs are exceeded in 2070 for Carrizo (67 ft)

Alcoa Simsboro Pumping is constant after 2020

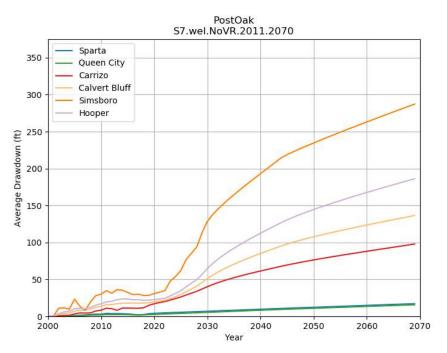


DFCs are exceeded in 2070 for Carrizo (67 ft), Simsboro (318), Hooper (205), and Calvert Bluff (183)

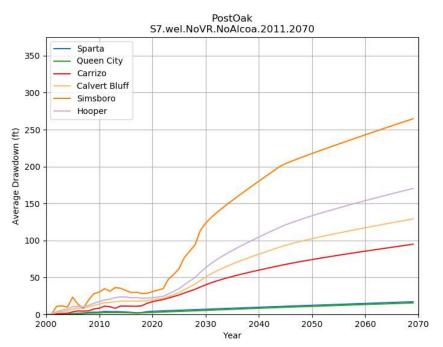

Sensitivity of Simulated DFCs to Changes in Pumping

No Vista Ridge Pumping After 2020 & ALCOA Simsboro Pumping is constant after 2020

DFCs are exceeded in 2070 for Carrizo (67 ft)


LPGCD Pumping is Held Constant after 2020

DFCs are exceeded in 2070 for Carrizo (67 ft)


Sensitivity of Simulated DFCs to Changes in Pumping

No Vista Ridge Pumping After 2020

DFCs are exceeded before 2070 for Carrizo (67 ft)

No Vista Ridge Pumping After 2020 & Alcoa Pumping is constant after 2020

DFCs are exceeded before 2070 for Carrizo (67 ft)

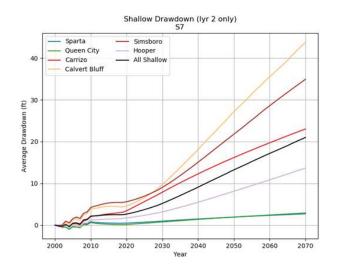
* 400-ft depth

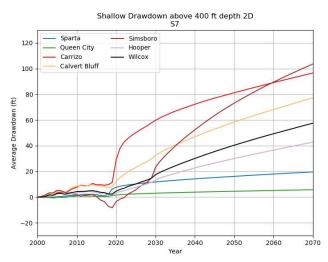
Sensitivity of PDLs and DFCs for PS-7 Pumping to Curtailment

POSGCD Rule 16.7 (pending)

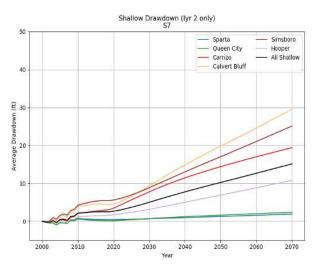
- The volume of water authorized by permit to be produced in one or more Management Zones may be reduced by the Board, if it determines a reduction is necessary, based on studies and evaluations performed by the Board or as determined by the Board to have scientific merit. This reduction shall begin as soon after a decision by the Board that such reduction is reasonably required for the conservation and preservation of groundwater, or the protection of the aquifer or groundwater users, within such Management Zone(s).
- If the Board, based on studies and evaluations performed or determined by the Board to have scientific merit, determines it is necessary to reduce the maximum allowable production per acre, or the permitted production for any Management Zone or Zones, to accomplish the desired future conditions, the protective drawdown limits, to preserve and conserve groundwater, to protect groundwater users within a Management Zone or Zones, or to implement reductions required under Rule 16.5, the Board shall establish a schedule for a reduction in the maximum allowable production or permitted production for the Management Zone or Zones.

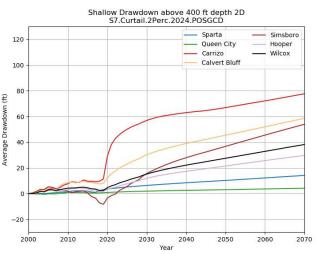
Curtailment in Vista Ridge Pumping from 2024 to 2044 at 2% Reduction per year

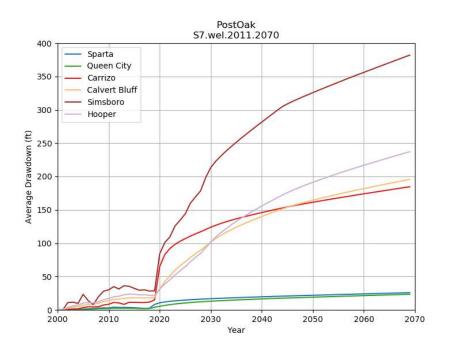


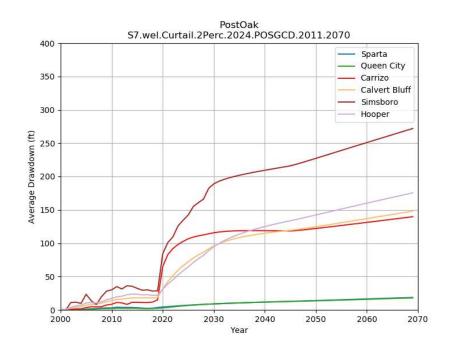

2024 do not occur

* 400-ft depth


Curtailment in Vista Ridge Pumping from 2024 to 2044 at 2% Reduction per year: Impacts on PDLs


PS-7

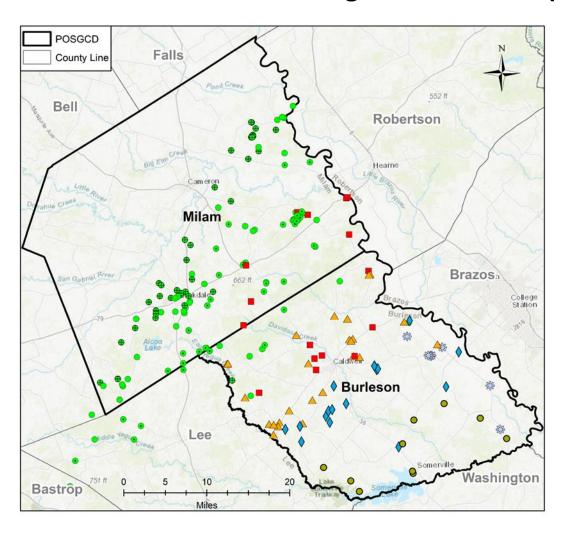

PS-7 with POSGCD curtailment



Curtailment in Vista Ridge Pumping from 2024 to 2044 at 2% Reduction per year: Impacts on DFCs

PS-7

PS-7 with POSGCD curtailment



Monitoring Well Network

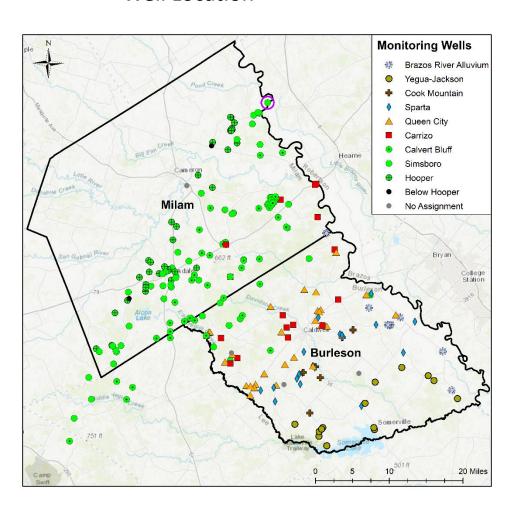
Current Monitoring Network

Monitoring Well Network (243 wells)

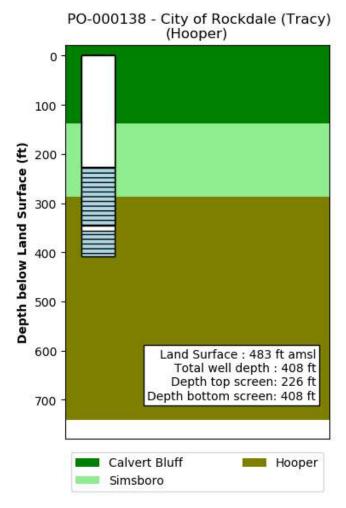
- Yegua/Jackson
- Sparta
- Reklaw/Weches
- Queen City
- Carrizo
- Calvert Bluff
- Simsboro
- Hooper
- Below Hooper
- Not Yet Assigned

Current Well Database: Spreadsheet

- Well Name
- Location
- Depth
- Top Screen/Bottom Screen (if available)
- Aquifer Assignment
- Aquifer(s) Intersected
- Year First Water Level
- Owner
- Multiple Hyperlinks

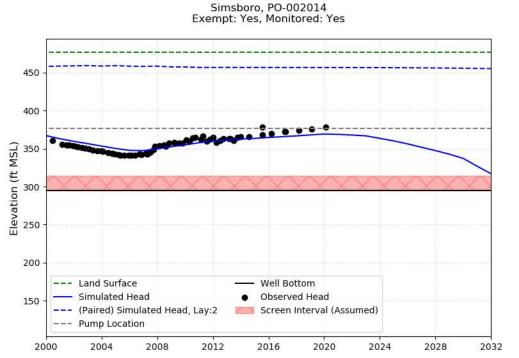


Click and image appears



Current Well Database: Hyperlinks

Well Location



Well Construction

Current Well Database: Hyperlinks

Modeled and Measured Water Levels

Driller Log

	STATE OF TEXAS WELL REPORT for Tracking #386114									
Owner:	Post Oak Savannah GCD	Owner Well #:	Burleson Pct. 1							
Address:	PO Box 92 Milano, TX 76556	Grid #:	59-34-6							
Well Location:	CR 144 & FM 11	Latitude:	30° 25' 40" N							
Troil Education.	Deanville, TX 77852	Longitude:	096° 45' 47" W							
Well County:	Burleson	Elevation:	320 ft. above sea level							
Type of Work:	New Well	Proposed Use:	Monitor							

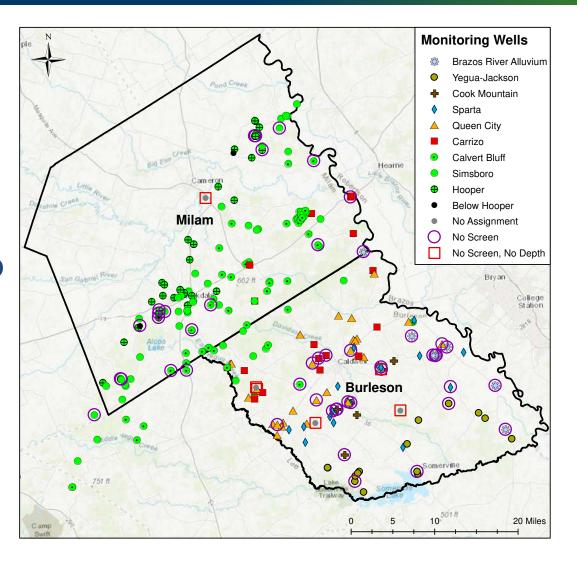
	Diameter	(in.)	Top Dep	oth (ft.)	Bottom Depth (ft.)		
Borehole:	8.75		0		400		
	7.5		40	00 50			
Drilling Method:	Mud (Hydrauli	c) Rotary					
Borehole Completion:	Filter Packed						
Borehole Completion:	Filter Packed Top Depth (ft.)	Bottom Depth ((ft.)	Filter Mat	erial	Size	
		Bottom Depth ((ft.)	Filter Mat		Size 12 - 20	
Borehole Completion: Filter Pack Intervals:	Top Depth (ft.)	- '		Grave		12 - 20	
	Top Depth (ft.)	500	Depth (ft.)	Grave	el	12 - 20 cks & material)	

Sealed By: Driller

				Metriod of Verification. N	ileasureu
	Surface Completion:	Surface Sleeve Inst	alled		
	Water Level:	60 ft. below land su	ırface on 2015-01-19	Measurement Method:	Unknown
	Packers:	No Data			
	Type of Pump:	No Pump Set			
	Well Tests:	Jetted	Yield: 80+ GPM wit	h 38 ft. drawdown after 4	hours
_	Packers: Type of Pump:	No Data No Pump Set			

Distance to Septic Field or other

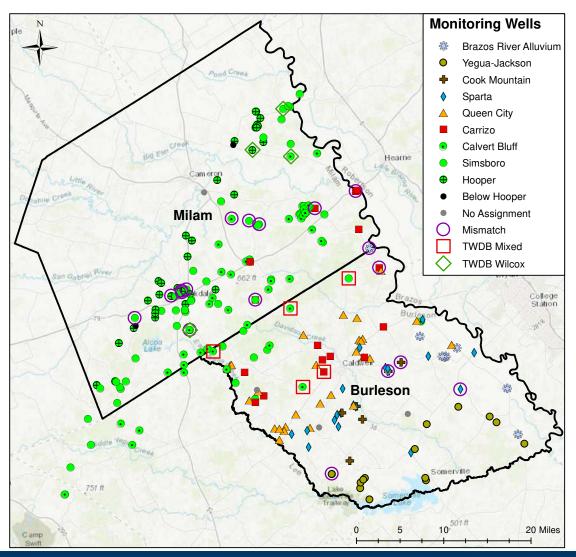
concentrated contamination (ft.): 100


Distance to Septic Tank (ft.): No Data

Aquifer Assignment: Lack of Well Construction Info

Some monitoring wells do not have depth or screen information \rightarrow

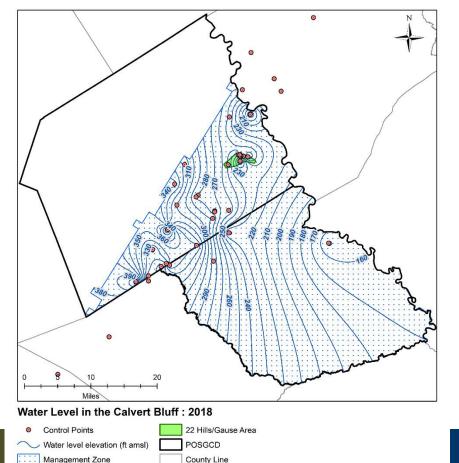
6 wells - no depths 47 wells - no screen info



Aquifer Assignment: TWDB Assignments Differ from INTERA Assignments*

TWDB dB does not match INTERA assignment

18 wells – difference between TWDB and INTERA assignments


Note: Also INTERA locations will differ from TWDB because INTERA uses locations from Trimble (35 wells lack Trimble measurements)

Aquifer Assignment: Inconsistent Water Level Information

 Some monitoring wells appear to be completed in one aquifer but water table does not match aquifer

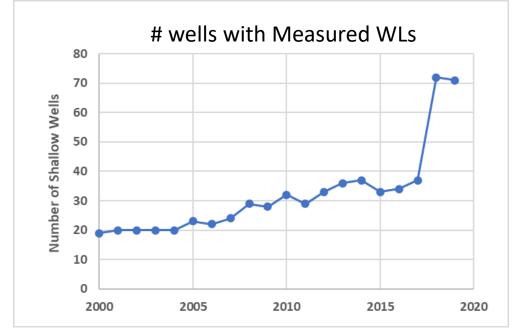
Original 2018 Water Level

Water Level in the Calvert Bluff: 2018

Control Points

Water level elevation (ft amsl)

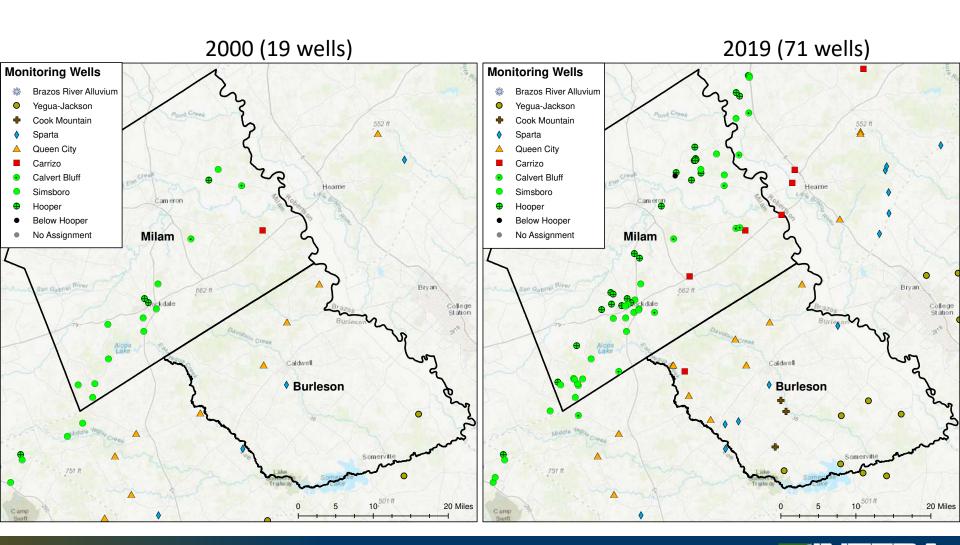
POSGCD


County Line

Moved 2 wells in 22 Hills area

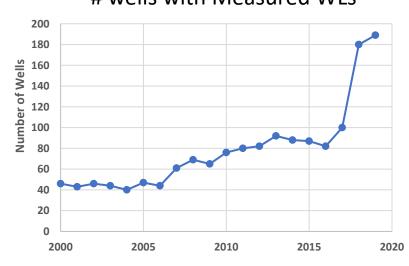
from Calvert Bluff to Carrizo

Well Coverage for PDL Compliance


		# of Shallow Monitoring Wells with Measured WLs																		
Aquifer	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Brazos River Alluvium	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yegua-Jackson	1	1	1	1	2	1	1	1	2	1	1	1	1	1	1	1	1	1	6	5
Sparta	1	0	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	4	4
Queen City	3	3	3	3	3	3	3	3	3	4	4	4	4	5	7	3	5	3	8	8
Carrizo	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	4
Calvert Bluff	2	2	2	2	2	3	3	3	4	3	3	3	4	4	4	4	3	3	7	7
Simsboro	9	10	9	9	10	12	12	13	14	14	15	15	15	15	15	14	14	15	22	22
Hooper	2	3	3	3	1	2	1	2	4	4	7	4	5	7	6	7	7	11	22	21
Total	19	20	20	20	20	23	22	24	29	28	32	29	33	36	37	33	34	37	72	71

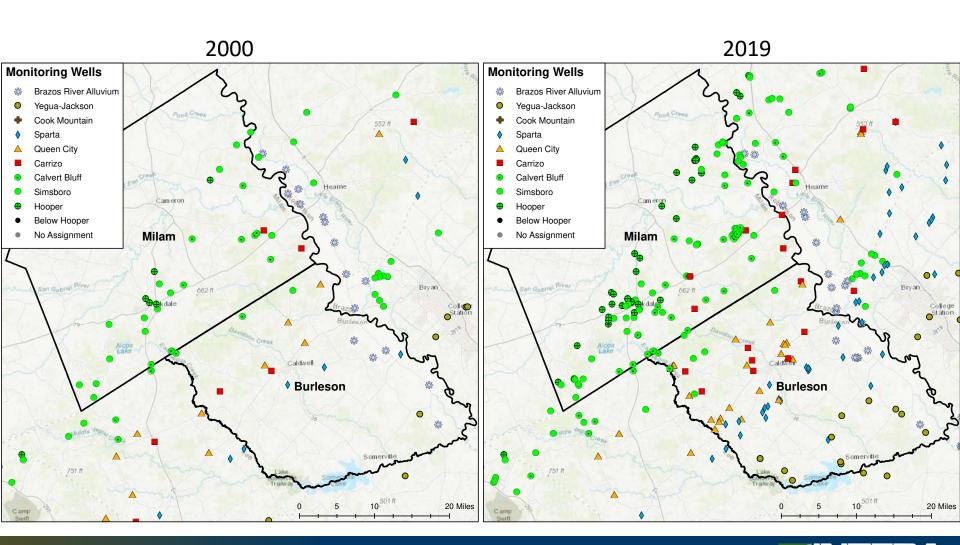
Well Coverage for PDL Compliance

Wells available if DFC Drawdown is measured from other years (instead of from 2000)

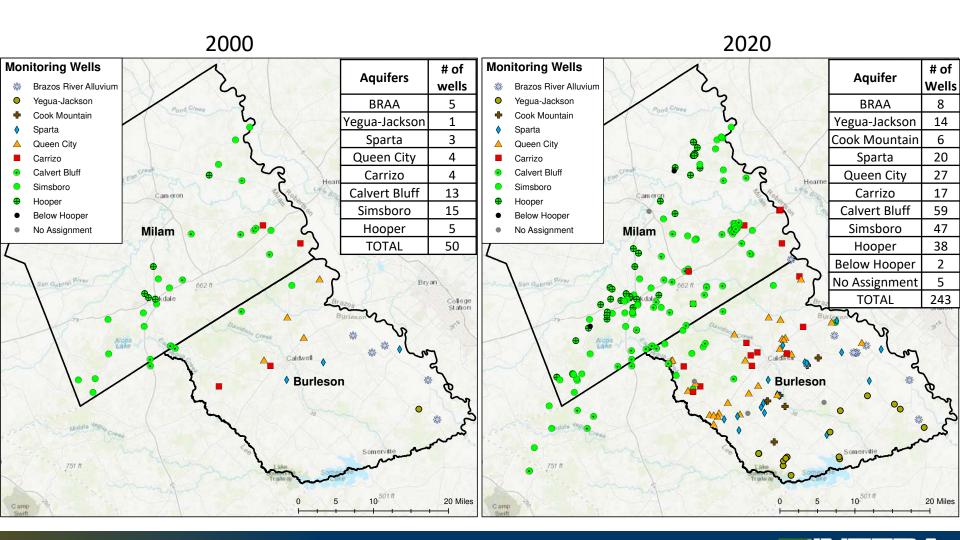


Well Coverage for DFC Compliance

Wells available if DFC Drawdown is measured from other years (instead of from 2000)


<u> </u>																				
								# of M	lonitorii	ng Wells	with N	/leasure	d WLs							
Aquifer	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Brazos River																				
Alluvium	5	5	5	5	5	5	5	7	7	7	7	7	7	7	5	4	4	5	5	6
Yegua-Jackson	1	1	1	1	2	1	1	2	3	2	2	2	3	3	3	1	3	4	8	11
Sparta	3	2	3	3	3	3	3	3	3	3	3	4	5	6	8	5	6	7	17	19
Queen City	4	4	5	4	4	4	4	4	4	5	7	8	5	10	11	8	7	10	23	21
Carrizo	4	2	3	2	2	2	2	2	4	4	5	5	5	6	5	6	5	6	11	14
Calvert Bluff	11	11	10	12	8	12	10	15	16	14	14	17	18	18	18	22	19	25	44	45
Simsboro	14	13	13	12	13	16	16	20	21	20	24	26	28	27	25	28	26	26	38	39
Hooper	4	5	6	5	3	4	3	8	11	10	14	11	11	15	13	13	12	17	34	34
Total	46	43	46	44	40	47	44	61	69	65	76	80	82	92	88	87	82	100	180	189

wells with Measured WLs

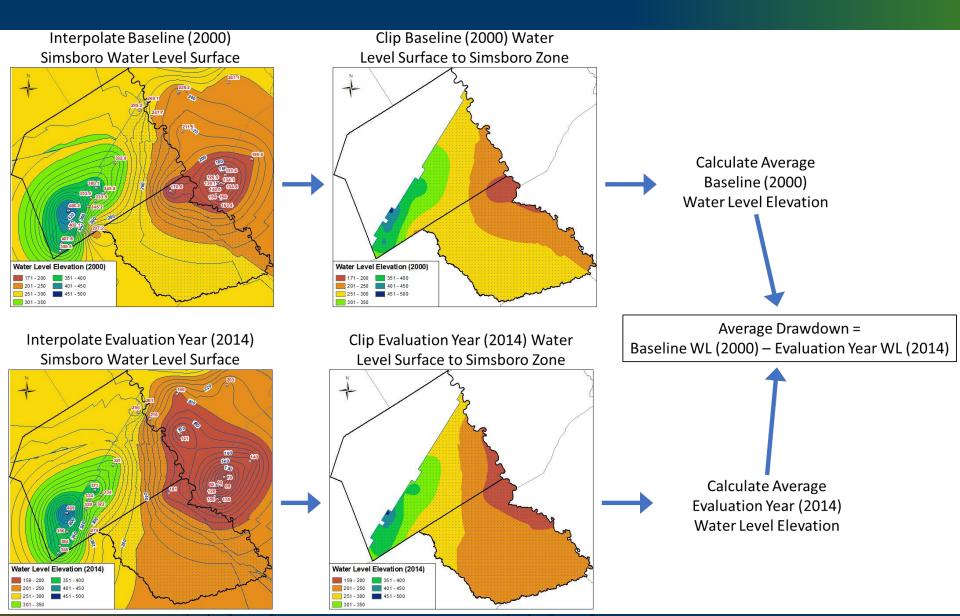

Well Coverage for DFC Compliance

Wells available if DFC Drawdown is measured from other years (instead of from 2000)

Adequacy of Coverage

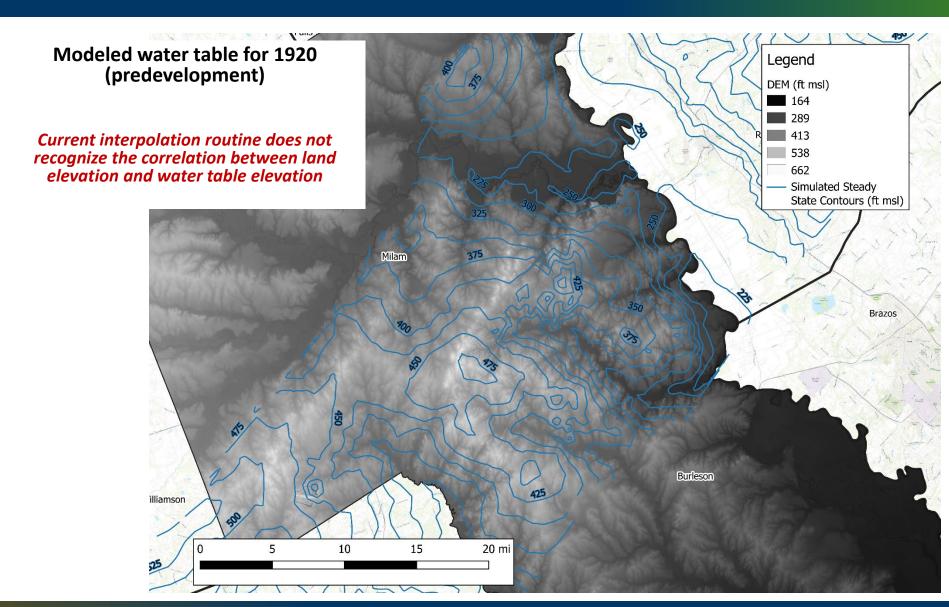
Total Monitoring Wells

Next Steps


- Confirm depths (and screen intervals, where possible) for every monitoring well
- Establish protocols for well aquifer assignments
 - GAM model layers
 - INTERA analysis of stratigraphy
 - Water levels
- Develop consistency between aquifer assignments used by POSGCD, TWDB, and adjacent GCDs
- Determine if there are spatial gaps in coverage
- If gaps exist, develop plan to fill data gaps (note: 2020 data should be augmented with Vista Ridge wells)

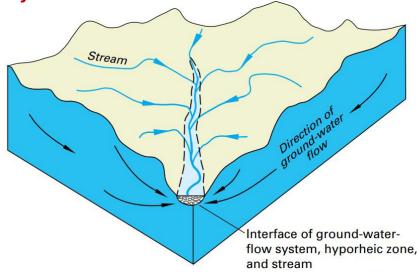
Monitoring Well Program

Review of Drawdown Calculation

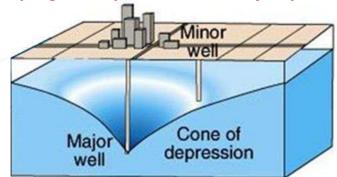


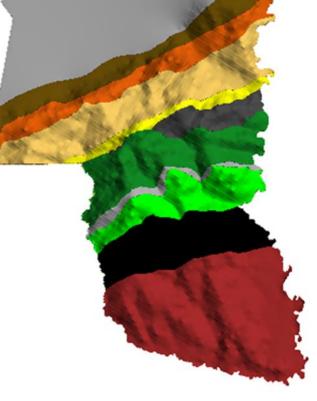
Current Interpolation Routine: Benefits

- Benefits Compared to Averaging Measured
 Water Levels at Individual Wells
 - Provides coverage across entire area of interest
 - Allows integration of monitoring data from adjacent
 GCDs
 - Prevents bias associated with clustered data points
 - Minimizes subjectivity associated with how to weight individual measurements
 - Well documented methodology that is publicly available

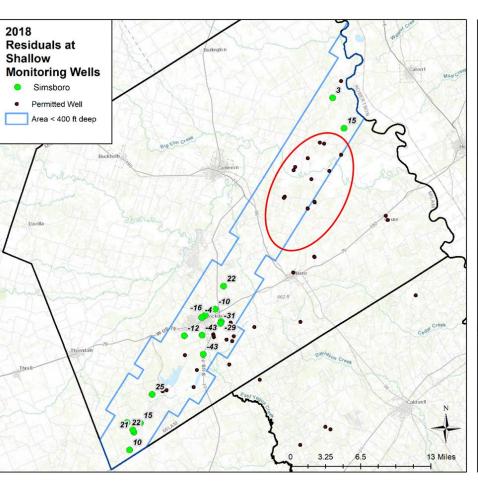


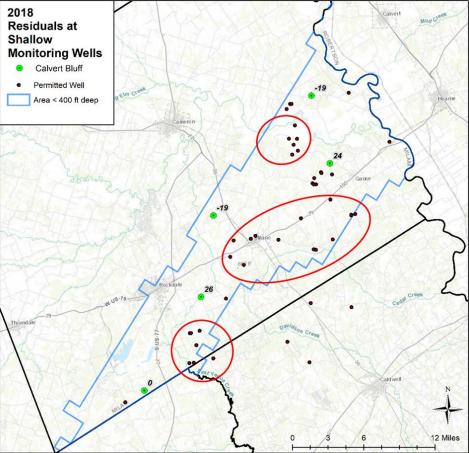
Reasons for Improving Current Interpolation Routine

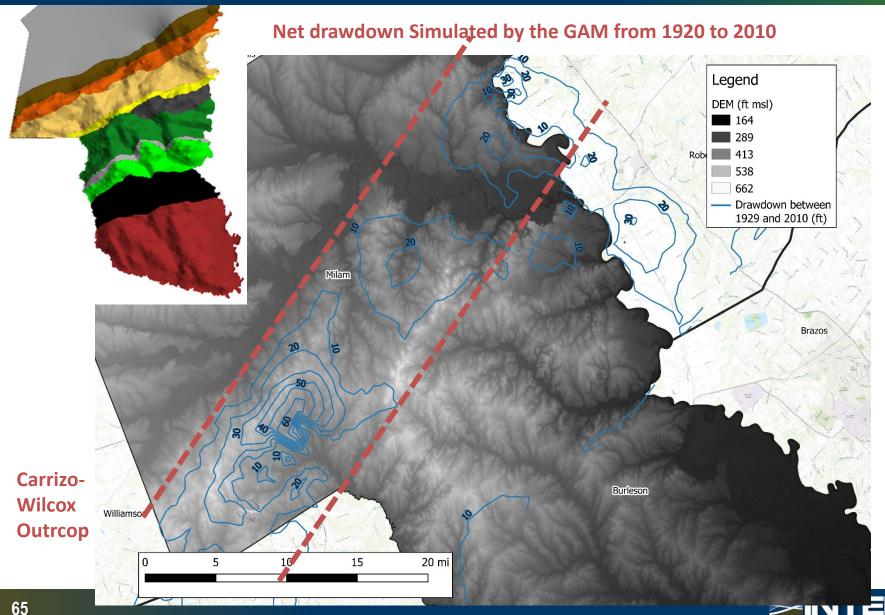

Reasons for Improving Current Interpolation Routine (con't)


Current interpolation routine does not enforce this connection to Rivers & Streams

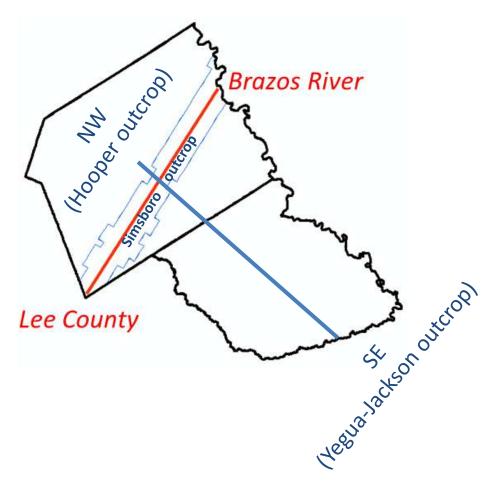
Current interpolation routine does not recognize that water levels and groundwater flow are affected by aquifer properties

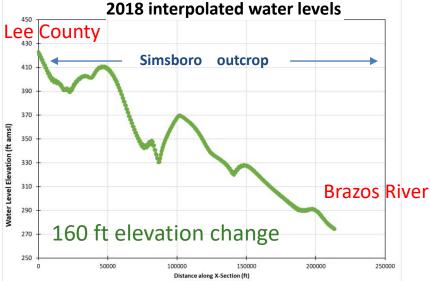


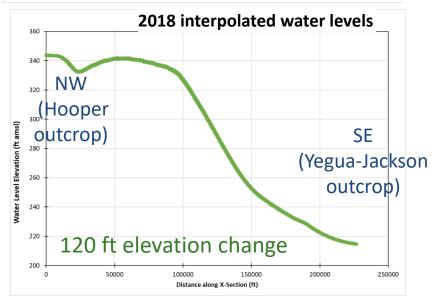



Reasons for Improving Current Interpolation Routine (con't)

Gaps where there are Permitted Wells but no nearby Monitoring Wells




Consideration for Adjusting Shallow Management Zone

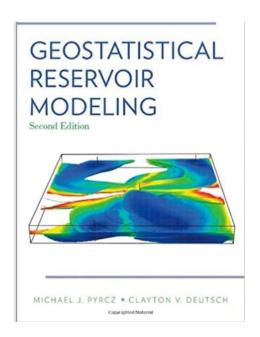


Reasons for Improving Current Interpolation Routine (con't)

Interpolation between large changes in water level elevations occurs with no consideration to factors that affect water levels

Reasons to Improve Interpolation Routine: Regulatory

- District has responsibility to apply Best-Science
- Significant consequences associated with decisions
 - Rule 16.4: reduce permitted production rate and/ormax production per acre
 - Rule 16.6: if new permit will exceed PDLs or DFCs,
 then production associated with permit and permits in
 the Management zone is reduced
 - Rule 16.7 : cut production rates by 2% or more in a production zones


Planned Improvements for Interpolation Routine

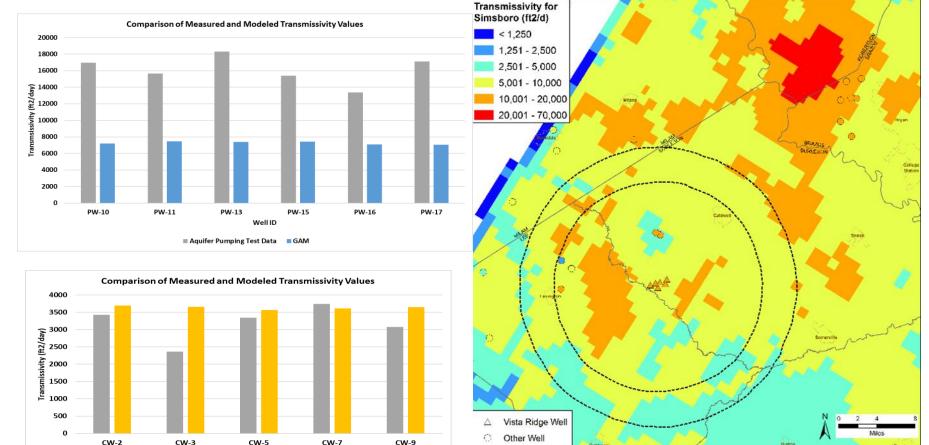
 Use a geostatistical-based interpolation technique that will use information in the groundwater model to help condition and constrain the interpolation of the measured water levels

 Improve protocols for filtering measured water levels before they are used in interpolation

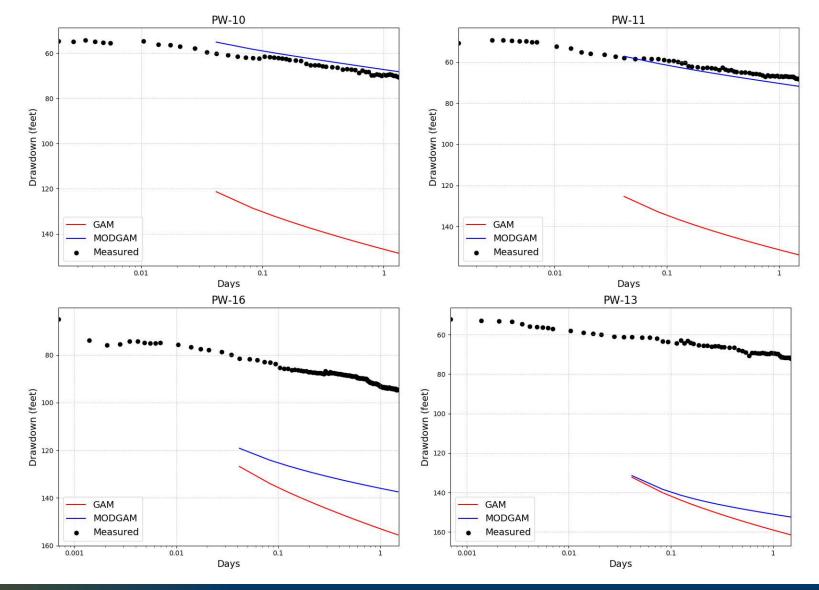
Next Steps

- QA/QC water level measurements for 2019 and 2020
- Work with Dr. Michael Pyrcz at UT Austin on developing and applying geostatistical methods
 - Dr. Pyrcz has developed software that is publicly available
 - Tenured Professor with distinguished publication record and 14 years with industry
- Apply Co-kriging Interpolation Routines
 - Routine that can incorporate info on topography and hydraulic boundaries
 - Routine that can incorporate simulated water levels from groundwater models

Improvements to Groundwater Model(s)


Reasons to Improve Sparta/Queen City/Carrizo-Wilcox GAM: Technical

 Simsboro Transmissivity in the Vicinity of Vista Ridge Wells is Low


Well ID

■ Aquifer Pumping Test Data

Evaluation of GAM and MODGAM*: Simulation of Simsboro Aquifer Pumping Tests

Options for Improving GAM

- Phase 1: Modify GAM Simsboro transmissivity values to be consistent with results from Vista Ridge's Simsboro pumping tests
 - Time Frame: 2 months
 - Coordination: TWDB and other GMA 12 consultants
 - Use: 1) GMA 12 joint planning
 - 2) Compliance Evaluation for PDLs and DFCs
 - 3) GWAP Annual Needs Assessment Report
- Phase 2: Adjust GAM to provide simulations consistent with monitoring data
 - Time Frame: On-going as needed
 - Use: 1) Evaluation of Compliance
 - 2) Regulation and Enforcement

Reports

Reports

GANA Report

Groundwater Assistance Program Annual
Needs Assessment

<u>Objective:</u> Evaluate the potential of water wells going "dry" based on simulated water levels from GMA 12 DFC simulations

CR Report

Evaluation of Compliance Goals Based on Monitored Water Levels

Objective: Evaluate compliance to *DFC's* and *PDL's* based on interpretation of measured water levels

MS Report

Assessment of Management Strategies for Water Availability and Production

Objective: Using best science to:

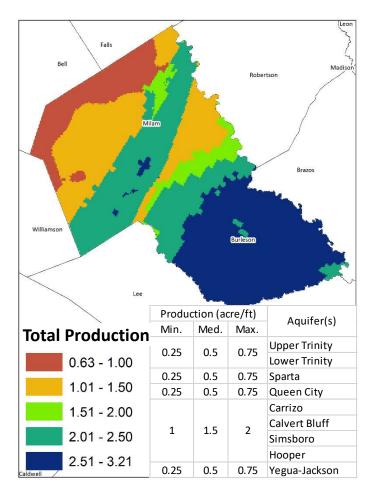
- 1) predict year that Rule 16 thresholds may occur
- 2) evaluate timing for production cutbacks to achieve management goals
- 3) assess the need for adjusting maximum allowable production of 2 ac-ft/ac
- 4) assess effectiveness of current management strategies for achieving management goals
- 5) identify possible changes in management strategies to help achieve management goals

GANA = Groundwater Assistance Program Annual Needs Assessment

CR = Compliance Report

MS = Management Strategies

Possible Considerations for Accessing Maximum Production Rate per Acre

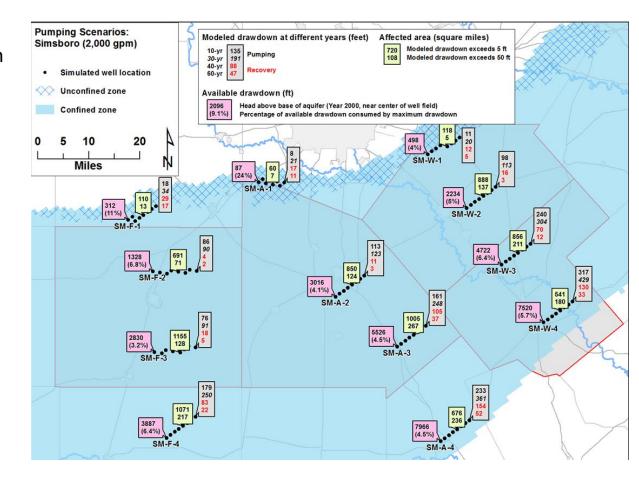

Possible Considerations

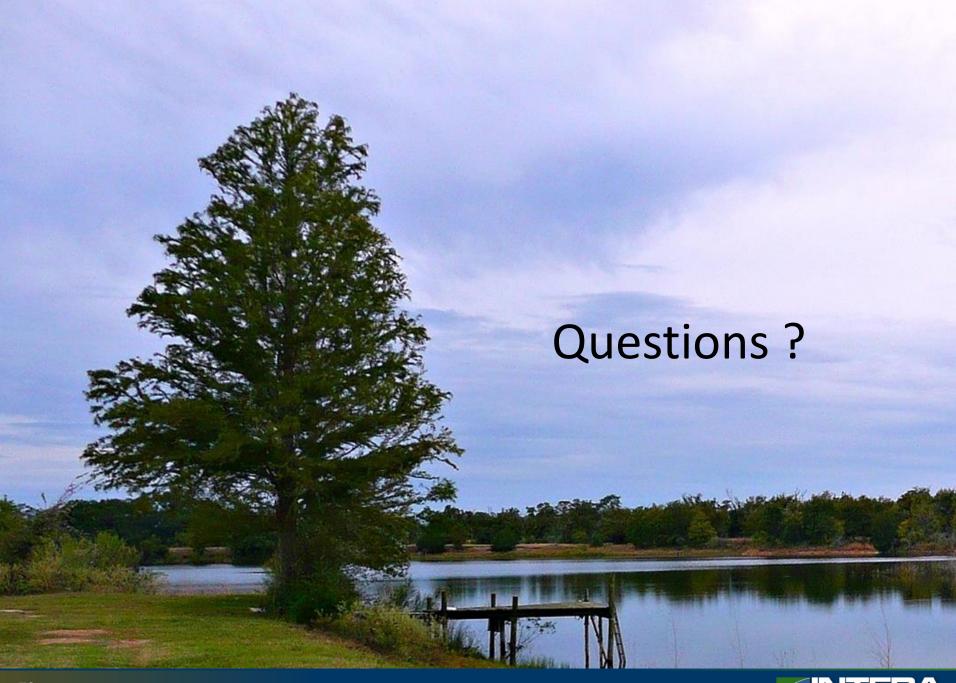
- Production Capacity
- Storage Capacity
- Depth/outcrop
- Water Quality

Differences Among Aquifers Storage Transmissivity

Aquifer(s)	Volume in Storage (10 ⁶ AF)	Area (sq miles)	% Total Storage		
Upper Trinity	86	807	19.0%		
Lower Trinity*	78	807	17.3%		
Sparta	16	576	3.5%		
Queen City	30	753	6.6%		
Carrizo	29	835	6.4%		
Calvert Bluff	63	1024	13.9%		
Simsboro	53	1132	11.7%		
Hooper	55	1237	12.2%		
subtotal	200	4229	44.2%		
Yegua-Jackson	42	291	9.3%		
total	452**		100.0%		
*Hensell, Pearsall,	& Hossten				
** equivalent of 41	5 feet of wat	er above the	district		

			-
Aquifer(s)	% Production Capacity	Area (sq miles)	Average Trans. (ft ² /day)
Upper Trinity	0.8%	807	211
Lower Trinity*	6.6%	807	591
Sparta	1.4%	576	532
Queen City	2.1%	753	608
Carrizo	12.7%	835	3,311
Calvert Bluff	10.9%	1024	2,322
Simsboro	46.1%	1132	8,874
Hooper	18.2%	1237	3,207
subtotal	88.0%	4229	4,530
Yegua-Jackson	1.1%	291	847
total	100.0%	7464	
*Hensell, Pearsall			




Possible Considerations for Accessing Maximum Production Rate per Acre

Possible Considerations

Perform similar well field simulations in different aquifers and compare aquifer response

- Drawdown
- Size of Cone of Depression
- Available Drawdown

