Workshop to DFC Committee: Collection, Management, Evaluation, and Reporting of Monitoring Data

October 8, 2020

Agenda

- Simulations from Modified SP/QC/CW GAM
 - Simulated and Measured Impacts from Vista Ridge Pumping
 - Results from PS-7 DFC Simulation
- Desired Future Conditions
 - Review Existing and PS-7 DFCs and MAGs
 - Considerations for Changing DFCs
 - Recommendations for GMA-12 and GANA Scenarios
- Highlights of Monitoring & Pumping Dashboards
 - Comparison of TWDB and POSGCD Well Assignments
 - Comparison of TWDB and POSGCD Pumping Rates

Agenda (con't)

- Water Level Analyses for DFC and PDL Compliance
 - Analysis Methods
 - Comparison of Analysis Methods
 - Recommendations for CR Report
- GWAP Annual Needs Assessment Report and Compliance Report Report
- Suggestions for 2021 Hydrological Studies
 - Improvement on Analysis Methods
 - Improvement to SP/QC/CW GAM

Simulations from Modified SP/QC/CW GAM

Vista Ridge Pumping Through August 2020

Month	Monthly acre-feet			
WOILI	Carrizo	Simsboro	Total	
Nov 2019	19	119	138	
Dec 2019	80	194	274	
Jan 2020	367	1,286	1,653	
Feb 2020	476	1,521	1,997	
Mar 2020	14	62	76	
Apr 2020	440	1,254	1,694	
May 2020	447	1,390	1,837	
Jun 2020	448	1,471	1,919	
Jul 2020	774	2,230	3,004	
Aug 2020	1,151	3,175	4,326	
Avg. Monthly Permit	1,250	2,994	4,244	

Location of Transducers

Sparta & Queen City

Carrizo

Calvert Bluff

Observations: First 8 months

- All measured drawdowns are about the same or less than simulated by groundwater model- no surprises
- No distinguishable impacts in Sparta or Queen City
- Measurable impacts in all formations in the Carrizo, Calvert Bluff, and Simsboro
- Revised GAM is over estimating drawdown in the Simsboro

Desired Future Conditions

POSGCD Pumping for PS-7

	Current DFC (feet)	Current MAG in 2070	S-7 Drawdown from 2010 to 2070 (feet)	S-7 Pumpage in 2070 (acre-feet)
Sparta	28	6,735	17	1,983
Queen City	30	504	19	1,045
Carrizo	67	7,058	177	18,205
Calvert Bluff	149	1,036	183	4,761
Simsboro	318	48,503	355	85,855
Hooper	205	4,422	222	3,126

Consideration for Evaluating DFCs

- Permitted Pumping
- Impact of Pumping on Water Levels at Existing Wells
- Compliance with existing DFCs and PDLs
- Existing Water Column above the Top of the Aquifer (Available drawdown)
- Impact on Pumping in Adjacent GCDs on DFCs in POSGCD
- Reported Pumping is Less than the Permitted Pumping
- Addition of Management Zones and Changes in DFC
- Uncertainty in model predictions (± 10%)

Carrizo Issues of Concern

Impacts of Simulated Drawdown on Existing Wells

GANA Perform Using PS-9

Impact of Non-POSGCD Wells on POSGCD DFCs

Vista Ridge	DFC (2010 - 2070)		
Pumping (AFY)	Carrizo	Calvert Bluff	Simsboro
0	105	157	347
5,000	127	165	349
6,000	132	166	349
7,500	139	169	349
9,000	145	171	350
15,000	172	181	351

	Current DFC (feet)	Current MAG in 2070	S-7 Drawdown from 2010 to 2070 (feet)	S-7 Pumpage in 2070 (acre-feet)
Carrizo	67	7,058	177	18,205

PO-0943 Hydrograph using Modified PS-7

DFC and PDLs Issues of Concern

PDLs

Current Current Drav DFC MAG in from (feet) 2070 to	S-7 S- wdown Pump n 2010 in 20 2070 (acre-	7 Dage D70 feet)
Sparta 28 6,735	17 1,9	83
Queen 30 504 City	19 1,0	45
Carrizo 67 7,058	177 18,2	205
Calvert 149 1,036 : Bluff	183 4,7	61
imsboro 318 48,503 3	855 85,8	355
Hooper 205 4,422	3,1	26

S

Sparta Permitted Pumping < 2,600 AFY

Addition of Management Zones and Possible Change of DFCs

Calvert Bluff

Hooper

Available Drawdown (water column above top of aquifer)

Available Water Column above the Top of the Aquifer

Aquifer	Water Column (ft) Above Top of Aquifer		
	Average	Median	
Sparta	851	806	
Queen City	892	708	
Carrizo	1,213	975	
Calvert Bluff	1,322	1,012	
Simsboro	2,000	1,729	
Hooper	2,287	2,114	

Contours of Available Water Column above the Top of Carrizo (2020)

Maps of Available Drawdown can be used to help understand the vulnerability of an aquifer to pumping impacts is spatially dependent

Permitted Amounts

Comparison of Pumping Versus Permitted

Aquifer	Permited Amount (AFY)	PS-7 Pumping (AFY)
Sparta	2,586	1,983
Queen City	1,414	1,045
Carrizo	18,690	18,205
Calvert Bluff	4,366	4,761
Simsboro	103,398	85,855
Hooper	2,618	3,126
Total	133,072	114,975

Uncertainty Associated with GAM Prediction

Uncertainty Associated with DFC Simulation

DFCs Discussion

Considerations

- drawdown (available, existing DFC, GANA report, DFC and PDL compliance)
- production (permit, existing MAG, percentage of TERS)
- Assessment of Water Levels above bottom of wells
- Sensitivity Analyses of Well Impacts based Modifications to PS-7

• Uncertainty

- Upper limit (15% 20%)
- Lower Limit (0 -5%)

• DFCs

Areas Based on new Management Area2

Highlights of Monitoring & Pumping Dashboards

Aquifer Assignment: TWDB Assignments Differ from INTERA Assignments*

Monitoring Wells Brazos River Alluvium Yegua-Jackson Cook Mountain Sparta Queen City Carrizo Calvert Bluff Hearne Simsboro Hooper **Below Hooper** Milam 💿 📀 No Assignment Mismatch TWDB Mixed **TWDB Wilcox** n Gabriel River College Station **Burleson** Somervi 751 ft 10^{.501 ft} 20 Miles Camp

TWDB dB does not match INTERA assignment

18 wells – difference between TWDB and INTERA assignments

Estimates of Reported Pumping

Estimates of Reported Pumping (con't)

Brazos River Alluvium

Unknown

Total Pumping

Water Level Analyses for DFC and PDL Compliance

Review of Drawdown Calculation

Current Interpolation Routine: Benefits

- No objective method for assessing uncertainty
 - Provides coverage across entire area of interest
 - Allows integration of monitoring data from adjacent GCDs
 - Prevents bias associated with clustered data points
 - Minimizes subjectivity associated with how to weight individual measurements
 - Well documented methodology that is publicly available

Current Interpolation Routine: Limitations

- Designed to generated delineate maps of watersheds from topographic
- Avoids creating depressions (like those around pumping wells)
- Underlying mathematic does not provide options to estimate uncertainty

Geostatistics for Predicting Water Levels

- •Defensibility: Best-science estimates (BSEs), industry-leading techniques
- •Robust Analysis: Allows inclusion of secondary data that is correlated to water level data
- •**Software**: Algorithms are known and code is available for review (not a blackbox)
- •**Reproducibility/transparency**: Remove any guesswork from annual drawdown maps
- •**Risk reduction** (no surprises): any uncertainty in estimates are known and predictable

Development of Geostatiscal Programs

- QA/QC water level measurements for 2019 and 2020
- Work with Dr. Michael Pyrcz at UT Austin on developing and applying geostatistical methods
 - Dr. Pyrcz has developed software that is publicly available
 - Tenured Professor with distinguished publication record and 14 years with industry

GEOSTATISTICAL RESERVOIR MODELING Second Edition

MICHAEL J. PYRCZ = CLAYTON V. DEUTSCH Copyrighted Material

Location of Shallow Monitoring Wells

- No major gaps in coverage
- One notable gap in coverage near Milam-Burleson County line
- Depth of wells range between 30 and 370 feet
- Notable changes in water levels (>10 ft) occur at some wells during 3-month sampling period
- Several outcrop zones are relatively thin and wide
- Excellent correlation between topography and water levels

Approaches for Interpreting Shallow Water Levels

- Topo2raster (baseline)
- Topo2rasters (baseline + stream elevations)
- Kriging (BSE, no secondary data)
- Kriging Detrended Water Levels (BSE, use model to "detrend" data)
- CoKriging using Topography (BSE, use model to "detrend" data)
- CoKriging using Topography & Stream
- CoKriging using Topography & Stream & Pumping

Location of Aquifer Monitoring Wells

- major gaps in coverage
- water levels change more sensitive than zone zones

2019 2010 8 2020 Water lovale

Approaches for Interpreting Aquifer Water Levels

- Topo2raster (baseline)
- Kriging (BSE, no secondary data)
- Kriging Detrended Water Levels (BSE, use model to "detrend" data)

Process for Generating Water Level Maps for

Detrending Water Levles

Miles

16000 ft

Comparison of Methods For Entire Aquifer

Topo2raster
Kriging

Kriging /Detrend

Comparison of Methods for Shallow Aquifer Zone

(<400 ft)

2019 2020

2018

Comparison of Variograms (2020 data)

Kriging\Detrending (shallow)

Kriging\Detrending (Simsboro)

Assessment

Criteria

- Conceptual assumptions
- Mathematical foundation
- Capability to support uncertainty analysis
- Scientific literature
- Consistency in predicted values
- Opportunity for continued improvement
- Evaluation
 - Kriging/Detrending is best
 - Kriging is too sensitivity to moderate perturbations in data
 - Topo2raster is a viable option for validation

Potential Applications

Shallow Zone

- Average Water Level Elevation with Kriging/Detrending
- Average Water Level Drawdown with Kriging/Detrending and possibility Topo2raster
- Data limitations in small outcrops
- Yegua/Jackson zone is least reliable
- Additional work recommended (uncertainty, starting year)

• Evaluation

- Kriging/Detrending is best
- Data limitation are significant in down dip regions of some aquifers
- Quality checks on measured data is very important
- Yegua/Jackson zone is least reliable because of GAM
- Recommendation is to use average drawdown as primary and average water levels as secondary criteria
- Additional work recommended (uncertainty, GAM)

GWAP Annual Needs Assessment Report and Compliance Report Report

Reports

GANA Report

Groundwater Assistance Program Annual Needs Assessment

<u>Objective:</u> Evaluate the potential of *water wells* going "dry" based on *simulated water levels* from GMA 12 DFC simulations **CR Report**

Evaluation of Compliance Goals Based on Monitored Water Levels

<u>Objective:</u> Evaluate compliance to *DFC's* and *PDL's* based on interpretation of measured water levels

MS Report

Assessment of Management Strategies for Water Availability and Production

<u>Objective:</u> Using best science to:

- 1) predict year that Rule 16 thresholds may occur
- 2) evaluate timing for production cutbacks to achieve management goals
- 3) assess the need for adjusting maximum allowable production of 2 ac-ft/ac
- 4) assess effectiveness of current management strategies for achieving management goals
- 5) identify possible changes in management strategies to help achieve management goals
- **GANA** = Groundwater Assistance Program Annual Needs Assessment
- **CR** = Compliance Report
- MS = Management Strategies

GWAP Annual Needs Assessment Report

- INTERA submit list of changes in GWAP discussed in Aug DFC Committee Meeting that address report on Oct 12
- INTERA submit proposed model runs on Oct 23
- Complete draft report by November 17th

Compliance Report

- Document analyzes presented on April 30 to DFC committee
- Include chapter on recommended changes to data collections and data analysis protocols
- Complete draft report by November 30^h

Suggestions for 2021 Hydrological Studies

Aquifer Research

- Continued Improvements to GAM
 - Pumping rates for permitted wells
 - Additional pumping tests
 - Calibration
 - POSGCD monitoring data
 - Vista Ridge monitoring data
- Kriging/Detrend Application
 - Improved Coupling between modeled and measured water levels
 - Quantity uncertainty

Evidence for Potential Improvement in the GAM

Questions?