Post Oak Groundwater Summit Vista Ridge – What Happens Now?

August 14, 2019

Management of Simsboro Aquifer & Vista Ridge Permit

- Aquifer Science
- District Planning, Policies, Rules & Regulations
- Monitoring of Groundwater Conditions & Compliance
- Modeling of Groundwater Conditions & Compliance
- Application of Management Strategies & Rules

Aquifer Science Background

How does POSGCD know what's going on underground?

Aquifer Science: Geophysical Logs are used to Characterize Subsurface Deposits

Geophysical Logs

Aquifer Science: Analysis of Geophysical Logs

Sand and Clays

Aquifer Science: Groundwater System

Aquifer Science: Groundwater System

Vista Ridge

Vista Ridge

What's an Acre-foot?

What's an Acre-foot?

Milam County

Data from State databases & POSGCD records

Burleson County

Data from State databases & POSGCD records

Historical Water Levels

https://posgcd.halff.com/Map/Public

Data from:

- Texas Water Development Board state monitoring network
- POSGCD District monitoring network
- Other Districts BVGCD & LPGCD monitoring networks

Aquifer Science Summary

- Geophysical Logs are used to Characterize Aquifers
 - aquifer boundaries
 - sands and clays
 - water quality
- Groundwater movement and drawdown impacts move more horizontal than vertical
- Shallow system above deep pumping is protected by clay deposits
- Large Pumping projects (like Vista Ridge) have occurred in Milam and are on-going in Brazos County
- We have decades of water level and pumping data from the Simsboro Aquifer

Management

What tools can POSGCD use to manage groundwater?

POSGCD Management Tools

- Rules
 - Well Spacing Criteria for Permitted Wells
 - From Property Line
 - From Nearest Existing Well
 - Limit Maximum Production for Permitted Wells
 - Correlative Right (based on *contiguous* acreage)
 - 2 acre-ft/acre (500 acres → 1,000 acre-ft/year)
 - Curtail Existing Pumping if:
 - Drawdown exceeds Desired Future Conditions (deep aquifer)
 - Drawdown exceeds Protective Drawdown limits (shallow aquifer)

Joint Planning Establishes Desired Future Conditions (DFCs)

- 5 Groundwater Conservation Districts
- Covers Central Carrizo-Wilcox Aquifer
- Update DFCs every 5 years
- Discuss pumping and management strategies
- Share available water and share impacts of pumping

Desired Future Conditions (DFC)

What do you want your aquifers to look like in the future?

"Speed limit" for aquifer pumping:

- Measurable
- Enforceable
- Can be adjusted for special locations
- Can be adjusted based on new data
- Chosen as the best balance of safety vs. productivity

Desired Future Conditions (DFCs) and Modeled Available Groundwater (MAG)

What do you want your aquifers to look like in the future?

	Aquifers						
~	Yegua Jackson *	Sparta	Queen City	Carrizo	Calvert Bluff	Simsboro	Hooper
DFC: Average Drawdown (ft) from 2000 to 2070	100*	28	30	67	149	318	205
MAG: Modeled Available Groundwater (AFY)	12,923	6,734	502	7,059	1,038	48,501	4,422
*2010 to 2070							

Note: The MAG for an aquifer is based on the DFC for the aquifer.

Note: If the DFCs stay the same and the GAM changes, the MAGs will change

Protective Drawdown Limits (PDLs)

What do you want the <u>Shallow</u> portions of your aquifers to look like in the future?

	Aquifers						
`	Yegua Jackson *	Sparta	Queen City	Carrizo	Calvert Bluff	Simsboro	Hooper
PDL: Average drawdown (ft) from 2000 to 2070 in water table	20	20	20	20	20	20	20
						-	

- Protective Drawdown Limits are meant to protect water table levels in the aquifer outcrops (Shallow aquifer only).
- Protective Drawdown Limits are only used in POSGCD (not adopted by GMA 12)

POSGCD Management Tools Summary

- Districts in GMA-12 are required by law to work jointly to manage aquifer resources
- Desired Future Conditions (DFCs) used as "speed limit" to manage aquifer use
 - Reviewed & updated every 5 years
 - Enforceable
- POSGCD has more restrictive well spacing and maximum production regulations than neighboring Districts
- POSGCD only district in GMA-12 that has regulations to protect wells in and near aquifer outcrops

Groundwater Monitoring

How can we check the aquifer health?

Monitoring Network

POSGCD Guidance Document for Monitoring

Post Oak Savannah Guidance Document for Evaluating Compliance with Desired Future Conditions and Protective Drawdown Limits

TABLE OF CONTENTS

1	INTRODUCTION			
	1.1	Desired Future Conditions	1	
	1.2	Protective Drawdown Limits	2	
2	MONI	TORING PERFORMANCE STANDARDS DEFINED IN POSGCD MANAGEMENT PLAN	3	
3	POSG	CD GROUNDWATER MONITORING WELL NETWORK	4	
	3.1	Locations	4	
	3.2	Aquifer Assignments	4	
	3.3	Monitoring Frequency	5	
	3.4	Data Transparency	5	
4	COLLE	CTING AND Managing MONITORING DATA	13	
	4.1	Collection procedures	13	
	4.2	Health and Safety Plan	13	
	4.3	Water Level Records	13	
	4.4	Data Availability	13	
5	METH	ODOLOGY FOR CALCULATING DRAWDOWN FROM MEASURED GROUNDWATER LEVELS.	14	
	5.1	Total Aquifer Management Zone	14	
	5.2	Shallow Aquifer Management Zone	14	
6	EVALU	JATING COMPLIANCE WITH DFCs and PDLs	20	
	6.1	DFC Compliance - Total Aquifer Management Zones	20	
	6.2	PDL Compliance - Shallow Aquifer Management Zones	21	

Appendix A: POSGCD Groundwater Monitoring Well Network

Appendix B: POSGCD Aquifer Assignment Methodology

Appendix C: POSGCD Monitoring Protocols

Appendix D: POSGCD Health and Safety Plan

Appendix E: POSGCD Water Level Measurement Form

Appendix F: Determining Average Drawdown in POSGCD Aquifer Management Zones for GMA 12 DFCs

Appendix G: Determining Average Drawdown in Shallow Aquifer Management Zones for POSGCD PDLs

Actions Based on Monitored Results

Threshold Level	Trigger Value	Action
1	Drawdown Exceeds 50% of DFC or PDL	Studies will commerce that evaluate the nature and extent of curtailment in groundwater production needed to achieve PDL and DFC. Develop options for curtailment.
2	Drawdown Exceeds 60% of DFC or PDL	Review Management Plan, Rules, and Regulations. Notify well owners of possible curtailent in groundwater production.
3	Drawdown Exceeds 75% of DFC or PDL	Board will consider and adopt amendments to Management Plan, rules, and Regulations. District anticipates that one of adopted amendments will include strategy for curtailment of pumping

Actions Based on Monitored Results

Calculated Drawdown Values Simsboro -10Expected Drawdown (linear interpolation) .10 Avg Drawdown (Surface) .30 ·50 from 2000 (feet) .70 .90 110 130 150 Threshold 1 (50 170 190 Drawdown 210 230 250 270 290 310 **Desired Future Condition** 330 350 2000 2010 2020 2030 2040 2050 2060 2070

Threshold 1 is set at 50% of the DFC

Expected Drawdown if DFC is achieved at a constant rate of drawdown

DFC Compliance for Simsboro Aquifer

Monitoring Wells

PDL Compliance for Simsboro Aquifer

Wells< 400 ft deep used to Characterized Shallow Aquifer Zone

POSGCD Monitoring Summary

- Monitoring Objectives
 - Impacts of current pumping
 - DFC and PDF compliance
 - Model evaluation/prediction assessment
 - Model improvement
- Use monitoring network to check Aquifer health
- POSGCD has Guidance Document for Monitoring & Analysis Protocols
- POSGCD and adjacent districts share data
- Keeps track of "real world" conditions
- Shows what DFC & PDL compliance looks like *NOW*
- Hydrographs are available for review on POSGCD web page

How can we see into the future?

Components that Comprise a Groundwater Availability (GAM) Model

- Conceptual Model
 - describes relationship and processes
- Data
 - aquifer properties, water level, flow rates
- Groundwater Numerical Code
 - equations that solves for flow and mass balances
- Model Construction and Calibration
 - size of aquifer blocks and methods used to fill data gaps

Schematic of Conceptual Model

GAM: Updated GAM in 2018

- Includes area larger than GMA 12
- Calibrated to match water levels from 1930 to 2010
- Each aquifer is represented by a model layer
- Over 1000 geophysical logs used to remap the geologic faults
- Built a shallow flow zone into model

Modeling

- Combine all data to create Groundwater Availability Model (GAM)
- Make sure model can reproduce observed historical behavior (calibration)
- Model shows POSGCD how much water is available <u>NOW</u>
- Model can predict how much water is available in <u>FUTURE</u>

Groundwater Resource

How Much Water is There?

Groundwater in Aquifer and 50-Year of Pumping the MAG

Note: recharge is not included

Planning for the Future

POSGCD does this now:

- Annual groundwater measurements
- Checks model against "real world"
- Communicates with neighbors
- Models "What if" future scenarios & plans accordingly

To prevent this in the future:

- Doesn't know if model matches "real world" conditions or not
- Unprepared for population growth or new development
- Surprised by effects from new projects & neighboring counties

New Joint Planning Cycle

Groundwater Management Area 12

- Adopt updated DFCs by January 5, 2022
 - science review
 - monitoring data
 - modeling results

Pumping Scenario for Initial Round of Joint Planning

Simsboro Total Pumping

POSGCD Major Simsboro Well Fields

Major Simsboro Future Pumpers in POSGCD:

ALCOA - 25,000 AFY

Manor I-130 – 20,000 AFY

Vista Ridge – 35,000 AFY (51,000 AFY total)

POSGCD Pumping in GAM Simulation

Simulated Average Drawdown in Simsboro

Year	POSGCD Contribution	Outside Contribution		
2030	58%	42%		
2040	57%	43%		
2050	49%	51%		
2060	41%	59%		
2070	38%	62%		

Estimated Percentage Contribution to Total Drawdown

Simsboro Water Budget (acre-ft/year) Illustrates Importance of GMA 12 Cooperation

Simsboro 2040

Simsboro Management

 Vista Ridge is far away from most registered Simsboro wells

Monitoring Simsboro Wells Near Vista Ridge to Check GAM

Planning for the Future

Can curtailment work using current POSGCD Rules?

Management of Pumping Impacts: Aquifer Science

- Aquifer science provides a framework for understanding timing and magnitude of potential pumping impacts
 - Millions of acre-feet of fresh water available in Simsboro.
 - High Simsboro pumping the past (ALCOA in Milam and City of Bryan/College Station in Brazos County)
 - Drawdowns caused by Simsboro Pumping are limited by presence of aquitards- negligible in Sparta, Queen City, and Yegua Jackson
 - Impacts to Shallow wells in Carrizo-Wilcox Aquifer will require decades to occur

Management of Pumping Impacts: Groundwater Monitoring

- Monitoring provides real-time assessment of drawdowns
 - Defensible data collected using technically sound protocols
 - Several Simsboro wells near Vista Ridge well field for early detection
 - Simsboro wells provide good areal coverage for existing users
 - Frequent measurements at selected wells will provide data useful for testing and/or improving the GAM

Management of Pumping Impacts: Groundwater Modeling

- **Modeling** provides capability to assess current conditions and predict future conditions
 - GAM has been validated for predicting impacts from 1930 to 2010 but is still regional
 - Assessment of GAM predictive capability is possible by comparing measured versus model water level responses
 - POSGCD is and will collect data to improve GAM for local conditions near Vista Ridge, Manor, and ALCOA
 - Geophysical logs
 - Aquifer pumping tests
 - Water levels

Management of Pumping Impacts: POSGCD Rules and Regulations

- **POSGCD Rules and Regulations** provide the tools to restrict future permit and to curtail pumping
 - Threshold limits
 - provide a clear path for curtailment of pumping
 - action levels provides appropriate work to understand what amount of curtailment is necessary by all pumpers in the Simsboro
 - DCF and PDLs
 - DFCs objective is regional sustainability of groundwater resource
 - PDLs protect the productivity and sustainability of wells in shallow portion of the aquifer

Management of Pumping Impacts: POSGCD Rules and Regulations

- Correlative Rights
 - provides a roadblock for multiple large pumping projects in adjacent areas
 - provides a ceiling that limit maximum pumping amounts
 - provides a lever to cut back on existing pumping
- Set up for Adaptive Management
 - Decisions based monitoring data
 - Promotes science and updates
 - Rules for maximum production, well spacings, and drawdowns can be adjusted over time

Take Aways

- Production from Simsboro (Wilcox) Aquifer will have negligible effects on wells in Sparta, Queen City, and Yegua Jackson Aquifer
- DFC's in combination with PDLs are very protective of registered wells
- Sufficient water in storage to meet Simsboro pumping demands without violating DFCs
- Local impacts near Vista Ridge well field will be large but there are no nearby Simboro wells
- POSGCD is a Texas Leader in supporting Hydrogeologic Science
- POSGCD has been diligent in preparing for this project for the last 15 years

Questions?

