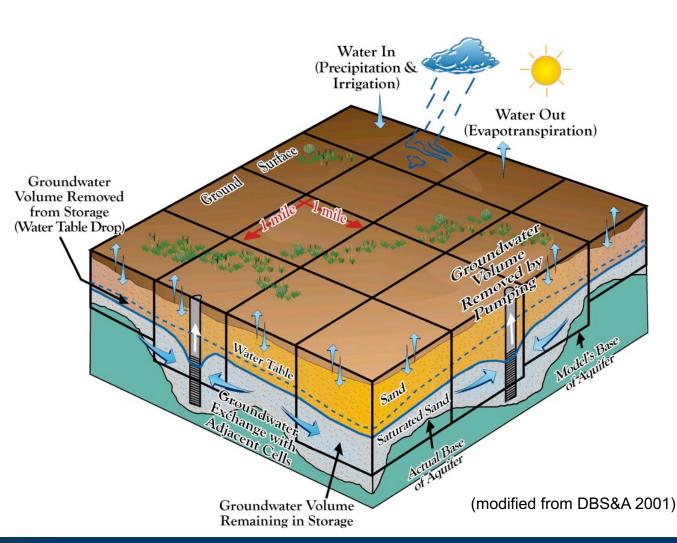
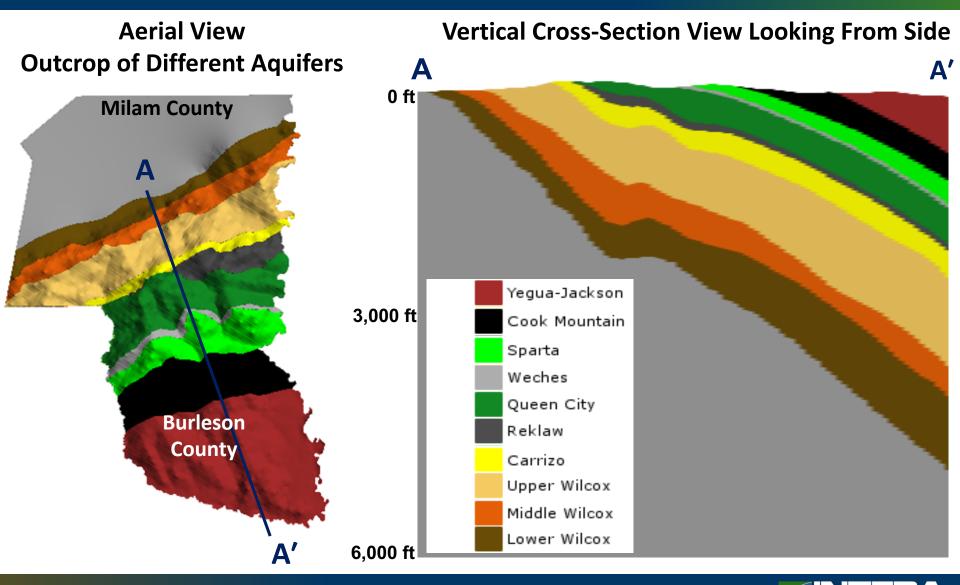
Application of Updated Sparta/Queen City/ Carrizo-Wilcox GAM for Simulating Water Levels near Public Water Supply Wells

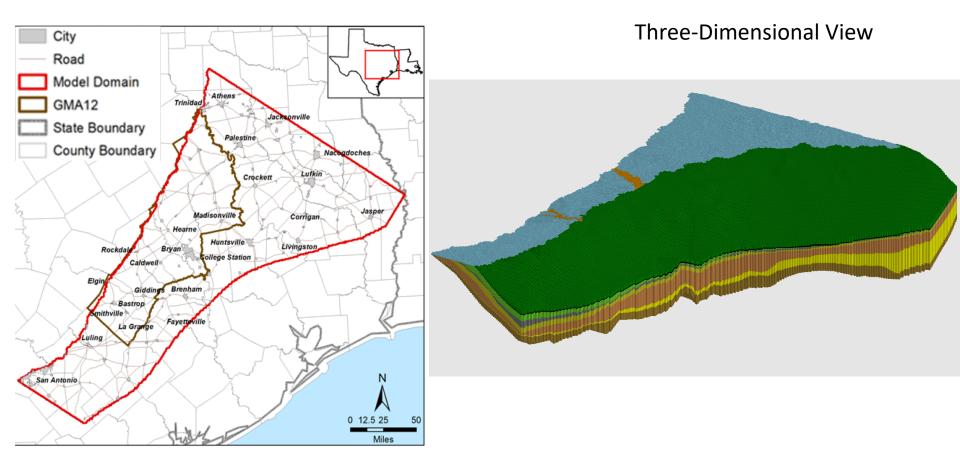
October 25, 2018


Outline

- Groundwater Availability Model for the Carrizo-Wilcox Aquifer
- Simulated Water Level Changes at Public Water Supply Wells
- POSGCD Rules for Aquifer Protection


What is a Groundwater Availability Model

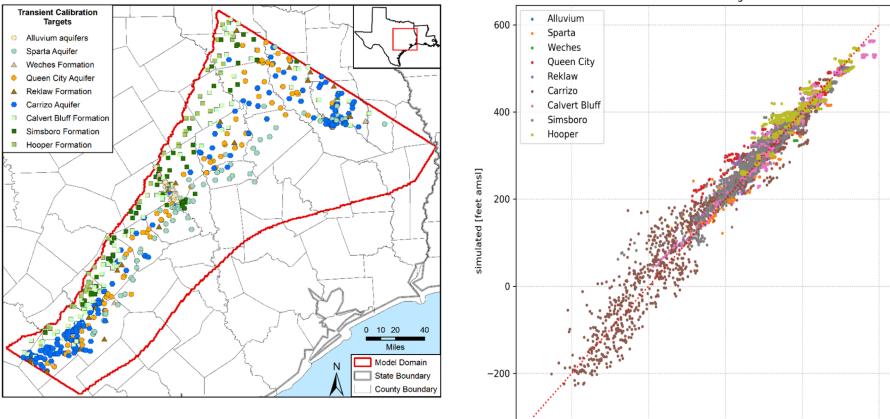
- Simplified Representation of Real System
- Consists of grids representing blocks of aquifer
- Flow equations link blocks together like an Excel Spreadsheet


POSGCD Aquifers

Δ


Model Construction

Areal Extent



Revised GAM Included Remapping of Faults

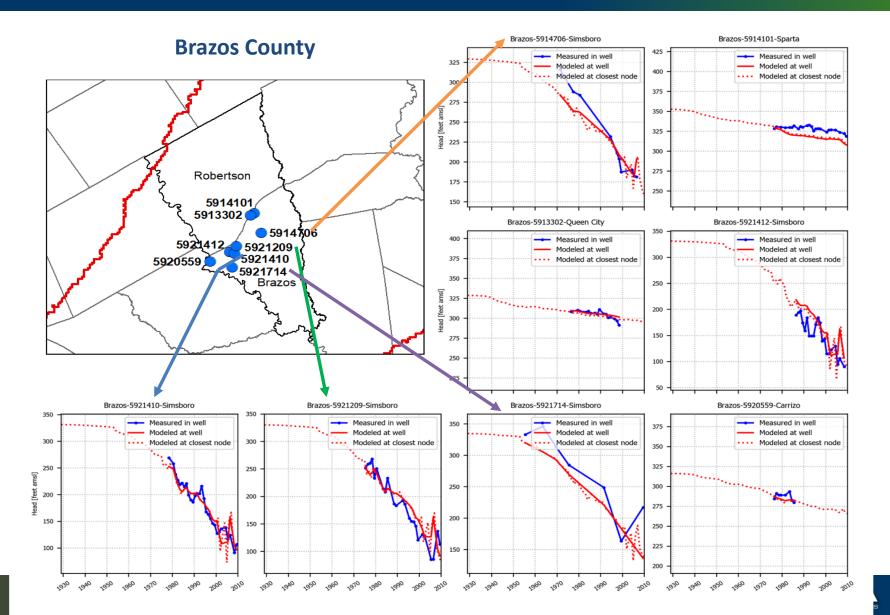
Modeled versus Measured Water Levels

-200

0

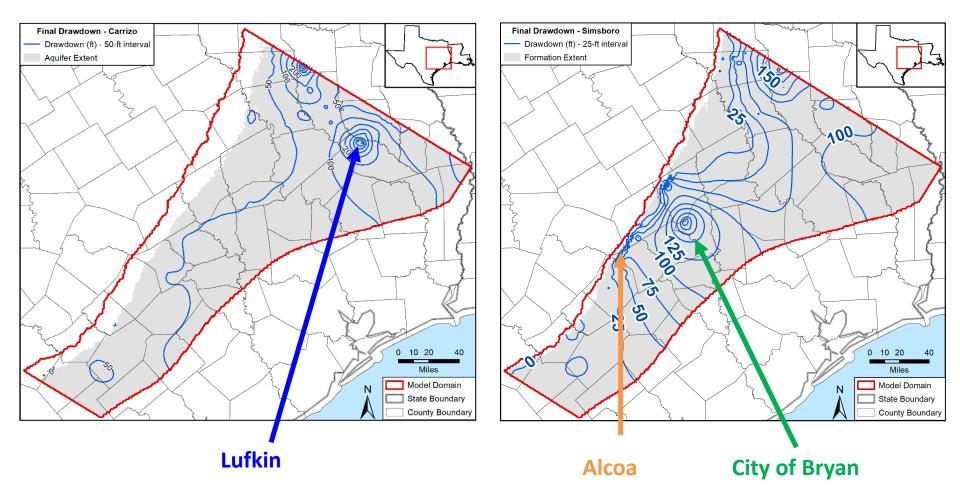
200

observed [feet amsl]


All Transient Targets

600

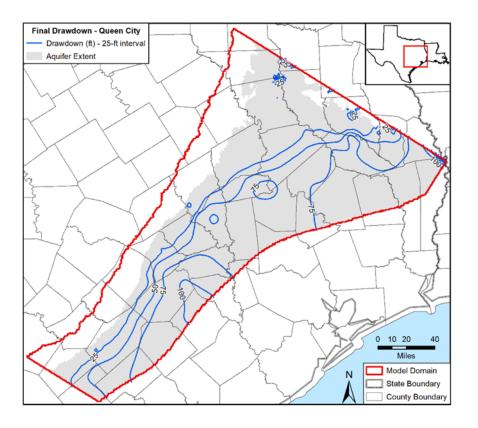
400

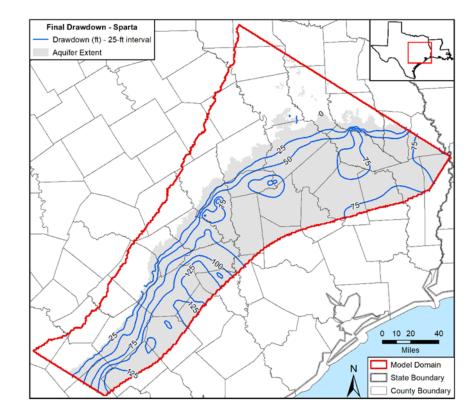

Updated GAM Provides Good Matches to Historical Water Levels in Regions of High Pumping in Simsboro Aquifer

Simulated Drawdown from 1930 to 2010

Carrizo Aquifer

Simsboro Aquifer





Simulated Drawdown from 1930 to 2010

Queen City Aquifer

Sparta Aquifer

Public Water Supply wells in POSGCD

Wells analyzed using updated GMA 12 model:

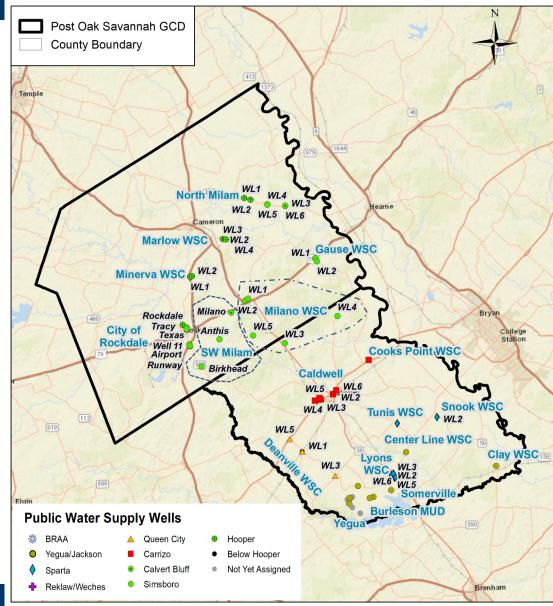
Name	Latitude	Longitude	Aquifer	Well Depth	Name	Latitude	Longitude	Aquifer	Well Depth
Caldwell - WL2	30.536	-96.6882	Carrizo	1210	Milano WSC - WL1	30.7161	-96.8634	Sims/CB	790
Caldwell - WL3	30.5272	-96.7143	Carrizo	1314	Milano WSC - WL2	30.7128	-96.87	Sims/CB	800
Caldwell - WL5	30.5298	-96.7171	Carrizo	1303	Milano WSC - WL3	30.6322	-96.7877	Sims/CB	1687
Caldwell - WL6	30.5431	-96.681	Carrizo	1252	Milano WSC - WL4	30.6793	-96.6738	Simsboro	2018
City of Rockdale (Airport)	30.6348	-96.9911	Sims/Hoop	463	Milano WSC - WL5	30.6481	-96.8547	Simsboro	1715
City of Rockdale (Runway)	30.6313	-96.9901	Sims/Hoop	475	Minerva WSC - WL1	30.7588	-96.9853	Hooper	218
City of Rockdale (Texas)	30.6636	-96.9958	Sims/Hoop	380	Minerva WSC - WL2	30.7602	-96.9818	Hooper	252
City of Rockdale (Tracy)	30.6664	-96.9958	Sims/Hoop	408	North Milam - WL1	30.9011	-96.8657	Hoop/Below	300
City of Rockdale (Well 11)	30.6331	-96.9904	Sims/Hoop	470	North Milam - WL2	30.8976	-96.852	Hooper	313
Cooks Point WSC	30.5969	-96.6098	Carrizo	1252	North Milam - WL3	30.8849	-96.7783	Calvert Bluff	318
Deanville WSC - WL1	30.4327	-96.7571	Queen City	784	North Milam - WL4	30.8878	-96.8166	Simsboro	334
Deanville WSC - WL3	30.3861	-96.6887	Queen City	1352	North Milam - WL5	30.8879	-96.8166	Hooper	523
Deanville WSC - WL4	30.5254	-96.7271	Carrizo	1300	North Milam - WL6	30.8849	-96.7784	Calvert Bluff	357
Deanville WSC - WL5	30.456	-96.7836	Queen City	797	Snook WSC - WL2	30.4884	-96.4683	Sparta	1332
Gause WSC - WL1	30.7872	-96.7169	Simsboro	992	Somerville - WL5	30.3803	-96.5608	Sparta	1612
Gause WSC - WL2	30.7812	-96.7141	Simsboro	1210	Somerville - WL6	30.3794	-96.5619	Sparta	1620
Lyons WSC - WL2	30.3845	-96.569	Sparta	1595	SW Milam - Anthis	30.6432	-96.9266	Simsboro	1000
Lyons WSC - WL3	30.3869	-96.5644	Sparta	1602	 SW Milam - Birkhead	30.5935	-96.9672	Sims/Hoop	1030
Marlow WSC - WL2	30.8262	-96.9067	Hooper	428	SW Milam - Milano	30.6913	-96.8999	Calvert Bluff	598
Marlow WSC - WL3	30.8271	-96.9137	Hooper	424	SW Milam - Rockdale	30.6713	-97.004	Hooper	485
Marlow WSC - WL4	30.8244	-96.8897	Sims/Hoop	501	Tunis WSC	30.4789	-96.5531	Sparta/CM	1038

* Blue highlight = POSGCD Monitoring well

Public Water Supply wells in POSGCD

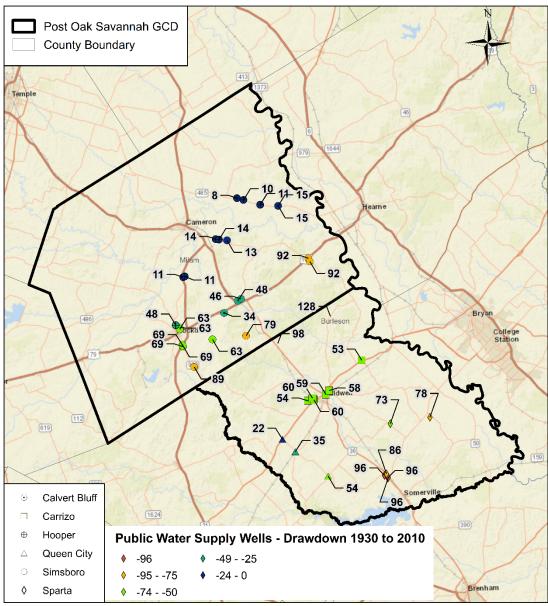
Wells omitted for this presentation:

				1
Name	Latitude	Longitude	Aquifer	Well Depth
Center Line WSC	30.4256	-96.5365	Yegua-Jackson	235
Clay WSC	30.3951	-96.3457	Yegua-Jackson	513
Lakeview North	30.3453	-96.6085	Yegua-Jackson	513
Somerville	30.3433	-96.6167	Yegua-Jackson	524
Little Oak Forest	30.3444	-96.66	Yegua-Jackson	325
Whispering Woods	30.3662	-96.6408	Yegua-Jackson	180
Apache Hills	30.3568	-96.5705	Yegua-Jackson	480
Yegua - WL2	30.334	-96.6605	Yegua-Jackson	390
Yegua - WL1	30.3336	-96.6607	-	-
Yegua - WL3	30.3271	-96.6546	-	-
Burleson MUD - WL1	30.3161	-96.6377	-	-
Burleson MUD - WL2	30.3414	-96.6639	-	-
Burleson MUD - WL5	30.339	-96.6623	-	-
Burleson MUD - WL3	30.3437	-96.657	-	-
Burleson MUD - WL4	30.3464	-96.6539	-	-

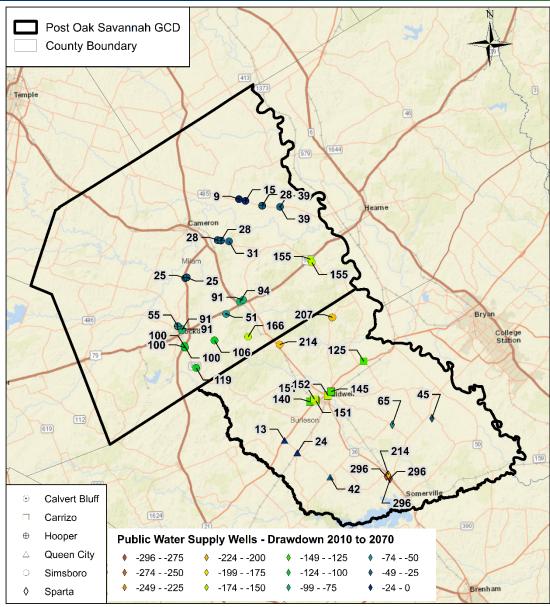

Yegua-Jackson is not included in updated GMA 12 model

Well depth not available

Public Water Supply wells in POSGCD


- Yegua-Jackson wells (southeast) were not analyzed
- Some neighboring WSC wellfields are outlined for clarity

GEOSCIENCE & ENGINEERING SOLUTIONS


Historical Drawdown from 1930 to 2010

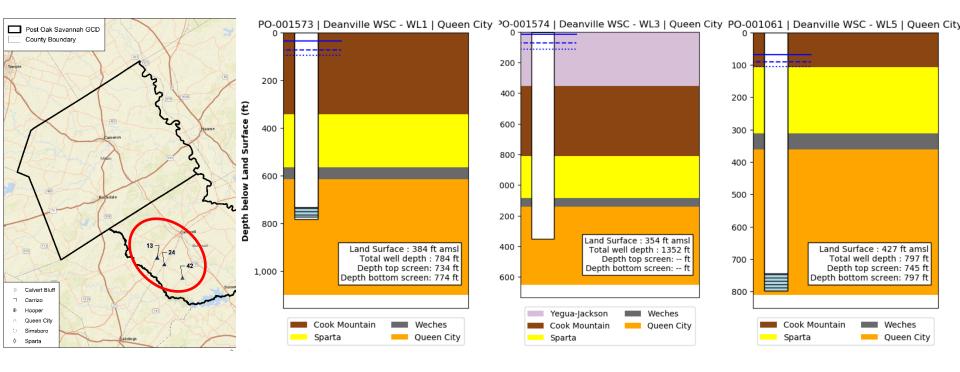
- Updated GMA 12 Groundwater Availability Model
- Decline in water level from 1930 to 2010

Drawdown from 2010 to 2070

- Updated GMA 12 Groundwater Availability Model
- Decline in water level from 2010 to 2070

Sparta

PO-000641 | Lyons WSC - WL2 | Sparta PO-001121 | Somerville - WL5 | Sparta PO-008493 | Somerville - WL6 | Sparta Post Oak Savannah GCD 0 -County Boundary 0 250 250 250 Depth below Land Surface (ft) 500 500 500 750 750 750 1,000 -1,000 1,000 m 1,250 1,250 -1,250 Land Surface : 304 ft amsl Land Surface : 294 ft amsl Land Surface : 344 ft amsl Total well depth : 1612 ft Total well depth : 1620 ft Total well depth : 1595 ft 1,500 Depth top screen: -- ft 1,500 Depth top screen: -- ft Depth top screen: -- ft 1,500 Depth bottom screen: -- ft Depth bottom screen: -- ft Depth bottom screen: -- ft Э÷ Calvert Bluff 1,750 Carrizo 1,750 1,750 Hooper Queen City Yegua-Jackson Sparta Yegua-Jackson Sparta Yegua-Jackson Sparta Simsboro Cook Mountain Cook Mountain Cook Mountain Ø Sparta


Example Sparta Well Diagrams & Water Levels

Water Levels: --- 1930 --- 2010 ---- 2070

Queen City

Example Queen City Well Diagrams & Water Levels

Water Levels: --- 1930 --- 2010 2070

Carrizo

Example Carrizo Well Diagrams & Water Levels

Water Levels: --- 1930 --- 2010 ---- 2070

Calvert Bluff

- | North Milam - WL6 | Calvert Bluff PO-000256 | North Milam - WL3 | Calvert Bluff PO-001063 | Milano WSC - WL2 | Calvert Bluff 0 Post Oak Savannah GCD County Boundary 100 50 -50 200 **£** 100 100 Surface 300 150 -150 Land 400 200 -200 elow 500 250 -250 600 Land Surface : 370 ft amsl Land Surface : 370 ft amsl Land Surface : 561 ft amsl 300 -300 Total well depth : 357 ft Total well depth : 318 ft Total well depth : 800 ft Calvert Bluf 700 Carrizo Depth top screen: -- ft Depth top screen: 284 ft Depth top screen: 650 ft Hoope Depth bottom screen: -- ft Depth bottom screen: 308 ft Depth bottom screen: 780 ft Queen City 350 350 Simshom 800 Sparta Calvert Bluff Calvert Bluff Calvert Bluff

Example Calvert Bluff Well Diagrams & Water Levels

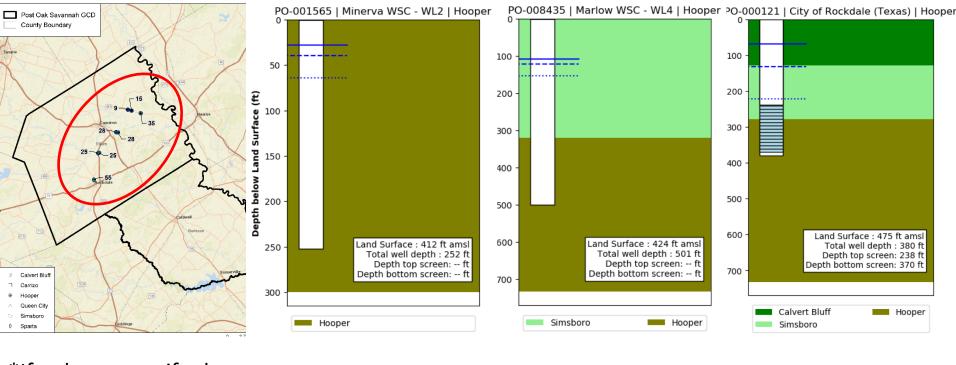
If only one aquifer layer, indicates an outcrop well

Water Levels: --- 1930 --- 2010 2070

Simsboro

Post Oak Savannah GCD PO-001071 | North Milam - WL4 | Simsboro PO-001111 | SW Milam - Anthis | Simsboro PO-000457 | Milano WSC - WL4 | Simsboro County Boundary 0 0 50 200 500 400 L,000 600 -L,500 106 100 100 -100 800 Land Surface : 461 ft amsl 2,000 Total well depth : 2018 ft L,000 Depth top screen: 1832 ft Land Surface : 342 ft amsl Land Surface : 483 ft amsl 300 Depth bottom screen: 1958 ft Total well depth : 334 ft Total well depth : 1000 ft Depth top screen: -- ft Depth top screen: -- ft Calvert Bluff Depth bottom screen: -- ft 2,500 Depth bottom screen: -- ft L.200 Carrizo 350 Sparta Carrizo Ð Hoope Queen City Weches Calvert Bluff Simsboro Simsboro Queen City Sparta Simsboro Calvert Bluff Simsboro Reklaw

Example Simsboro Well Diagrams & Water Levels


If only one aquifer layer, indicates an outcrop well

Water Levels: --- 1930 --- 2010 2070

Hooper

Example Hooper Well Diagrams & Water Levels

If only one aquifer layer, indicates an outcrop well

Water Levels: --- 1930 --- 2010 2070

POSGCD Approach for Aquifer Protection

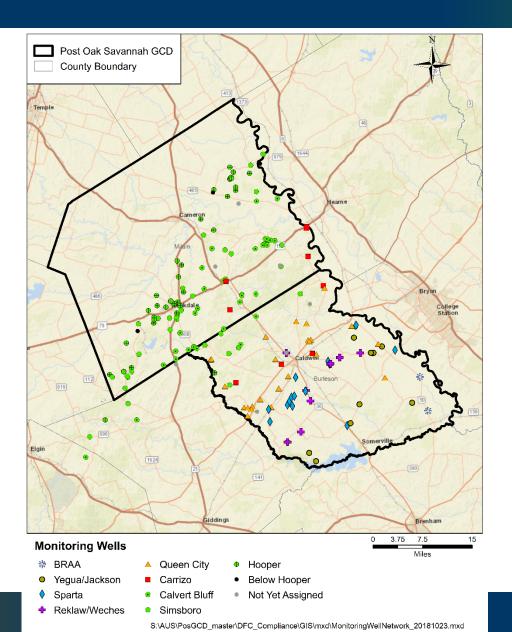
• Groundwater Management Zones

• Groundwater Monitoring Program

• POSGCD Rules for Aquifer Protection

5. Management Zones

The District is divided into groundwater management zones for the purpose of evaluating and managing groundwater resources recognizing the different characteristics and anticipated future development of the aquifers in the District.


The District will establish and enforce Rules for the spacing of wells, the maximum allowable production of groundwater per acre of land located over an aquifer, require permits for production, regulate drawdown and provide for a reduction in the maximum allowable production and permitted production of groundwater per acre of land based on the different surface and subsurface characteristics and different evaluation and monitoring within the Management Zones.

Designated Management Zones

- Aquifers: Brazos River Alluvium, Trinity, Sparta, Queen City, Carrizo, Upper Wilcox, Middle Wilcox, Lower Wilcox, Yegua/Jackson Management Zone
- Shallow Zones for Aquifers: All deposits that occur at a depth of 400 feet or less for aquifers above except for Brazos River Alluvium ... purpose is to characterize the water levels in the unconfined portions of the aquifers

Monitoring Well Network

24

Guidance Document for Collection and Analysis of Monitoring Data

TABLE OF CONTENTS

1	INTRODUCTION							
	1.1	Desired Future Conditions	1					
	1.2	Protective Drawdown Limits	2					
2	MON	ITORING PERFORMANCE STANDARDS DEFINED IN POSGCD MANAGEMENT PLAN	3					
3	POSG	CD GROUNDWATER MONITORING WELL NETWORK	4					
	3.1	Locations	4					
	3.2	Aquifer Assignments	4					
	3.3	Monitoring Frequency	5					
	3.4	Data Transparency	5					
4	COLLI	ECTING AND Managing MONITORING DATA						
	4.1	Collection procedures	13					
	4.2	Health and Safety Plan	13					
	4.3	Water Level Records						
	4.4	Data Availability	13					
5	METH	IODOLOGY FOR CALCULATING DRAWDOWN FROM MEASURED GROUNDWATER LEV	ELS.14					
	5.1	Total Aquifer Management Zone						
	5.2	Shallow Aquifer Management Zone						
6	EVAL	UATING COMPLIANCE WITH DFCs and PDLs	20					
	6.1	DFC Compliance - Total Aquifer Management Zones						
	6.2	PDL Compliance - Shallow Aquifer Management Zones	21					

Appendix A: POSGCD Groundwater Monitoring Well Network Appendix B: POSGCD Aquifer Assignment Methodology Appendix C: POSGCD Monitoring Protocols Appendix D: POSGCD Health and Safety Plan Appendix E: POSGCD Water Level Measurement Form Appendix F: Determining Average Drawdown in POSGCD Aquifer Management Zones for GMA 12 DFCs

Appendix G: Determining Average Drawdown in Shallow Aquifer Management Zones for POSGCD PDLs

Post·Oak·Savannah·Guidance·Document·for·Evaluating· Compliance·with·Desired·Future·Conditions·and·Protective· Drawdown·Limits·¶

1

¶.

Prepared for:

Post-Oak-Savannah-Groundwater-Conservation-District+ 310-E-Ave-C+ Milano,-TX-76556¶

1

Prepared by:¶

9600-Great-Hills-Trail¶ Suite-300W¶ Austin,-TX-78759¶ [1] •/ 1]

August-2018¶

Status of PDF Compliance

Management	PDL	Drawdown from 2000 to 2012	Drawdown from 2000 to 2013	Drawdown from 2000 to 2014	Drawdown from 2000 to 2015	Drawdown from 2000 to 2016	Drawdown from 2000 to 2017	
Zone	FUL	Calculated Drawdown (% of DFC)						
Yegua Jackson	20	5.7 (29%)	6.4 (32%)	6.8 (34%)	7.3 (36%)	4.1 (21%)	3.1 (15%)	
Sparta	20	4 (20%)	4.5 (22%)	4.9 (25%)	4.5 (22%)	3.1 (15%)	2.4 (12%)	
Queen City	20	3.4 (17%)	4.1 (20%)	4.6 (23%)	4.1 (20%)	2.2 (11%)	1.2 (6%)	
Carrizo	20	4.7 (23%)	5.8 (29%)	6.2 (31%)	5.6 (28%)	3.5 (18%)	2.2 (11%)	
Calvert Bluff (Upper Wilcox)	20	5.9 (29%)	7 (35%)	7.2 (36%)	6.7 (34%)	5.5 (27%)	4.5 (22%)	
Simsboro (Middle Wilcox)	20	6 (30%)	6.6 (33%)	6.7 (33%)	6.1 (31%)	5 (25%)	4 (20%)	
Hooper (Lower Wilcox)	20	6 (30%)	6.2 (31%)	6.3 (32%)	6.2 (31%)	5.1 (26%)	4.3 (22%)	

Rule 16.4- Actions Based on Monitoring Results

- Threshold 1
 - Criteria (60% of MAG, 50% of DFC or PDL, DFC projected using GAM to be exceeded in 15 years)
 - Initial Required Action (addition study to identify the source of impacts and/or improve site data or analysis tools)
- Threshold 2
 - Criteria (70% of MAG, 60% of DFC or PDL)
 - Initial Required Action(review of MP and rules, initiation of public process to discern preventive and/or protective actions including but limited to Rules 16.5 and 16.6, initiate development of response and action workplan)

Rule 16.4- Actions Based on Monitoring Results (con't)

- Threshold 3
 - Criteria (75% of DFC or PDL)
 - Initial Required Action(consider and adopt amendments to MP and rules, conduct public hearings, develop and implement a Response and Action Workplan)
 - Reduce permitted production and/or maximum allowable production

Rule 16.5 Reductions Required by Regulatory Action

- "Board may proportionately reduce the maximum amount of water that may be permitted per acre and the volume of water authorized to be produced under any permit issued by the District"
- "Board will adjust the thresholds established in Rule 16.4..."

Rule 16.6 Adjusting Maximum Production Permitted

- "District shall adjust the maximum groundwater production permitted per acre and/or the permitted production under any permit issued by the District as follows:"
 - "the maximum water production permitted per acre for the Management Zone and the water authorized to be produced under any permit issued by the District for that zone will be reduced"
 - "production in a Management Zone may be reduced to the extent that production in that Management Zone is impacting water drawdown levels in any Management Zone in the District"
 - "The maximum allowable production of 2 acre feet of groundwater per acre of land, provided in Rule 5.1.2, may be reduced, and the maximum allowable production may be established or reduced for any one, or more than one, Management Zone"

Adjustments to the 2 AFY/acre Maximum Production Rate

- Factors that Could be used for Basis of Fair Share
 - Surface acreage
 - Groundwater in storage underlying acreage
 - Aquifer production capacity underlying acreage
 - A combination of the three factors above
- Review Several Mathematical Options for Transforming (or Scaling) Factors to Production Rate (af/acre)
- Example Maps of Production Rates
 - Single aquifers
 - All aquifers

Questions?