Update to the Carrizo-Wilcox Groundwater Availability Model (GAM)

October 9, 2018

GAM Updates

- Increased resolution near Colorado and Brazos River
- Addition of shallow groundwater flow zone
- Enhanced representation of recharge
- Enhanced model predictive capabilities near streams
- Updated aquifer properties using recent aquifer pumping tests
- Update fault locations and properties
- Increased calibration period for simulation of historical water levels

Model Construction

Areal Extent – no change City Road Model Domain Athens GMA12 Trinidad Jacksonville State Boundary Palestine **County Boundary** Nacogdoches Lufkin Crockett Jasper Madisonville Corrigan Hearne Huntsville Livingston Bryan Rockdal ollege Station Caldwell Elgin Giddings Brenham Bastrop Smithville Fayetteville La Grange Luling San Antonio 0 12.5 25 50 Miles

Grid cell Sizes – Smaller and refined around rivers

Three-Dimensional View of Updated GAM with Ten Model Layers

Cross-Sections of Model Layers in Updated GAM

Vertical Layering- added two layers - river alluvium and a shallow groundwater flow zone

Changes to Recharge & Shallow Groundwater Flow

Recharge Rate about Doubled

- Recharge only occurs on outcrops
- Recharge Rate Increases with:
 - increased annual precipitation
 - decreased annual ET
 - Increased permeability (or percent sand) of formation

Groundwater Flux to Streams About Tripled

- When aquifer is full, primary outlet for groundwater discharge is surface water
- Addition of Shallow Model Layers allows two Flow Zones to Coexist:
 - Shallow groundwater flow strongly affected by SW-GW interaction
 - Deep groundwater flow is strongly affected by pumping

Revised Recharge Function based on Analysis of River Gages

Revised Recharge Function

Precipitation-Recharge Relationship for GMA 12

Precipitation Percentile	Average Precipitation (in/yr)	Recharge (in/yr)	Recharge divided by Precipitation
0.1	26.3	0.8	0.03
0.2	29.2	1.2	0.04
0.3	32.2	1.6	0.05
0.4	34.3	1.8	0.05
0.5	36.9	2.0	0.05
0.6	38.9	2.1	0.05
0.7	42.3	2.3	0.05
0.8	44.9	2.3	0.05
0.9	48.2	2.3	0.05

* Revised GAM has about twice the amount of recharge than current GAM

Simulation of SW-GW Interactions

Aquifer Pumping Tests

Updated Fault Representation: Smaller Footprint and Faults with Varying Properties

- Faults mapped using geophysical logs
- Properties of faults determined by analysis of pumping tests
- Less obstruction to groundwater flow

Lengthen Historical Calibration Period

- Previous model simulated 20 years
 – 1980 through 1999
- Updated model simulates
 80 years
 - 1930 through 2010

Historical Pumping from GMA 12

Simulated versus Observed Water Levels from 1930 to 2010

Historical Simsboro Water Levels in in Brazos County

Historical Simsboro Water Levels in Milam County

Historical Simsboro Water Levels in Robertson County

Questions?